Answer:
A. Increasing the voltage of the battery
Explanation:
The relationship between voltage, V, current, I and resistance, R, is given as follows;
V = I × R
∴ I = V/R
From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit
Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.
Decreases the input force
It would be, 1.000. Hope that helps :)
Answer: 75V
Explanation:
Given that,
total resistance (Rtotal) = 150Ω
Current (I) = 0.5A
Change in electric potential (V) = ?
Recall that potential difference is the product of amount of current and the amount of resistance in the circuit. And its unit is volts.
So, apply the formula V = I x Rtotal
V = 0.5A x 150Ω
V = 75V
Thus, the change in electric potential across the circuit is 75 Volts
The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.