Answer:
1.40 atm
Explanation:
To answer this question we can use<em> Gay-Lussac's law</em>, which states:
When volume and number of moles remain constant.
- T₁ = 23°C ⇒ 23+273.16 = 296.16 K
- T₂ = Boiling point of water = 100 °C ⇒ 100+273.16 = 373.16 K
We <u>put the known data in the equation and solve for P₂</u>:
- 1.11 atm * 373.16 K = P₂ * 296.16 K
Answer:
Rate constant of the reaction is
.
Explanation:
A + B + C → D + E
Let the balanced reaction be ;
aA + bB + cC → dD + eE
Expression of rate law of the reaction will be written as:
![R=k[A]^a[B]^b[C]^c](https://tex.z-dn.net/?f=R%3Dk%5BA%5D%5Ea%5BB%5D%5Eb%5BC%5D%5Ec)
Rate(R) of the reaction in trail 1 ,when :
![[A]=0.30 M,[B]=0.30 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.30%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.30%20M)
![R=9.0\times 10^{-5} M/s](https://tex.z-dn.net/?f=R%3D9.0%5Ctimes%2010%5E%7B-5%7D%20M%2Fs)
...[1]
Rate(R) of the reaction in trail 2 ,when :
![[A]=0.30 M,[B]=0.30 M,[C]=0.90 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.30%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.90%20M)
![R=2.7\times 10^{-4} M/s](https://tex.z-dn.net/?f=R%3D2.7%5Ctimes%2010%5E%7B-4%7D%20M%2Fs)
...[2]
Rate(R) of the reaction in trail 3 ,when :
![[A]=0.60 M,[B]=0.30 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.60%20M%2C%5BB%5D%3D0.30%20M%2C%5BC%5D%3D0.30%20M)
![R=3.6\times 10^{-4} M/s](https://tex.z-dn.net/?f=R%3D3.6%5Ctimes%2010%5E%7B-4%7D%20M%2Fs)
...[3]
Rate(R) of the reaction in trail 4 ,when :
![[A]=0.60 M,[B]=0.60 M,[C]=0.30 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.60%20M%2C%5BB%5D%3D0.60%20M%2C%5BC%5D%3D0.30%20M)
![R=3.6\times 10^{-4} M/s](https://tex.z-dn.net/?f=R%3D3.6%5Ctimes%2010%5E%7B-4%7D%20M%2Fs)
...[4]
By [1] ÷ [2], we get value of c ;
c = 1
By [3] ÷ [4], we get value of b ;
b = 0
By [2] ÷ [3], we get value of a ;
a = 2
Rate law of reaction is :
![R=k[A]^2[B]^0[C]^1](https://tex.z-dn.net/?f=R%3Dk%5BA%5D%5E2%5BB%5D%5E0%5BC%5D%5E1)
Rate constant of the reaction = k
![9.0\times 10^{-5} M/s=k[0.30 M]^2[0.30 M]^0[0.30 M]^1](https://tex.z-dn.net/?f=9.0%5Ctimes%2010%5E%7B-5%7D%20M%2Fs%3Dk%5B0.30%20M%5D%5E2%5B0.30%20M%5D%5E0%5B0.30%20M%5D%5E1)
![k=\frac{9.0\times 10^{-5} M/s}{[0.30 M]^2[0.30 M]^0[0.30 M]^1}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B9.0%5Ctimes%2010%5E%7B-5%7D%20M%2Fs%7D%7B%5B0.30%20M%5D%5E2%5B0.30%20M%5D%5E0%5B0.30%20M%5D%5E1%7D)
![k=3.3\times 10^{-3} M^{-2} s^{-1}](https://tex.z-dn.net/?f=k%3D3.3%5Ctimes%2010%5E%7B-3%7D%20M%5E%7B-2%7D%20s%5E%7B-1%7D)
Answer:
ver explicacion
Explanation:
Los iones se forman cuando las especies químicas pierden o ganan electrones.
Las sustancias iónicas consisten en un ión positivo y negativo cuyas cargas se equilibran exactamente entre sí, por lo que el compuesto iónico es neutro.
Los átomos de metal se mantienen unidos por el enlace metálico. Esto implica la interacción entre iones metálicos cargados positivamente y un mar de electrones negativos. Las cargas positivas de los iones metálicos están exactamente equilibradas por el mar de electrones cargados negativamente, por lo que el metal es neutro.
A locating agent is needed in an experiment to separate amino acids by chromatography as it helps to analyze colorless substances on paper.
<h3>What is chromatography?</h3>
Chromatography is an analytical method frequently used to separate a chemical mixture into its components, allowing for in-depth analysis of each component.
There are many different types of chromatography including liquid, gas, ion-exchange, and affinity chromatography, but they all use the same basic principle.
<h3>What is the use of a locating agent in Chromatography?</h3>
In paper chromatography, colorless compounds are examined using a locating agent.
It is a chemical that combines with colorless substances to produce colorful compounds that are easy to see for analysis. Ninhydrin spray is an example of a locating agent of this type.
Thus, a locating agent is used in an experiment to separate amino acids by chromatography as it helps in determining colorless substances on paper.
Learn more about chromatography:
brainly.com/question/11960023
#SPJ9