Rational expectations theory suggests that the speed of adjustment Purcell correction would be very quick.
<h3>What Is Rational Expectations Theory?</h3>
The rational expectations theory is a widely used concept and modeling technique in macroeconomics. Individuals make decisions based on three primary factors, according to the theory: their human rationality, the information available to them, and their past experiences.
The rational expectations hypothesis was originally suggested by John (Jack) Muth 1 (1961) to explain how the outcome of a given economic phenomena depends to a certain degree on what agents expect to happen.
- People who have rational expectations always learn from their mistakes.
- Forecasts are unbiased, and people make decisions based on all available information and economic theories.
- People understand how the economy works and how government policies affect macroeconomic variables like the price level, unemployment rate, and aggregate output.
To learn more about Rational expectations theory from the given link
brainly.com/question/16479910
#SPJ4
<span>A. frustration-aggression theory.
Good Luck!!</span>
Answer:
Associations Clusters
Explanation:
There is three basic type of clusters, globular clusters, open clusters, associations clusters. Associations cluster consist of younger stars that is younger than globular and open clusters stars.
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
The initial kinetic energy of the car is

Then, the velocity of the car is decreased by half:

so, the new kinetic energy is

So, the new kinetic energy is 1/4 of the initial kinetic energy of the car. Numerically: