The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
Answer:
You are a guest magician in a circus. One of your tricks is to place a football on an inclined plane without the football rolling over is explained below in details.
Explanation:
spinning ball halts after traveling some range due to friction energy act different direction of movement of the ball. you can observe in the figure.
Let any rolling ball of mass (m ) is traveling with velocity v ,
common effect on ball (N) = mg
because of motion, friction energy develops on the contact exterior and begins to resist the movement of the rolling ball.
hence,
fr = uN = umg act on communicating exterior, so, after any time due to friction energy rolling ball gets to rest.
Answer:
a) 0.25m
b) 5 m/s
Explanation:
When the spring is compressed both boxes are moving with the same velocity, so applying the principle of linear momentum conservation:

Now applying the principle of energy conservation:

We got that the maximum compression is 0.25m.
Cp shows the amount of energy needed to raise temperature by one degree for one gram of water.
Formula for calculating cp is:

Final temperature is 26.73°C.