Because if you increase the surface area of such a fragile object there is more space and in turn more of a chance for the object (in this case the egg) to be damaged.
The highest point of a wave is called the crest. Among the choices, the correct answer is C. The height of the wave can be determined using the crest and the trough. The trough is the lowest point of a wave. The wavelength is the distance between two crests of a wave.
The moon orbiting the Earth
Explanation:
The motion of the moon orbiting the earth is a circular motion. Circular motion is simply the motion of an object in circle at constant speed.
- A cannonball flying from a cannon is a projectile motion and not a circular motion.
- A car moving along a straight track is a linear/translational motion.
- Pendulum of a grandfather clock is a simple harmonic motion.
Learn more:
Circular motion brainly.com/question/2562955
#learnwithBrainly
Answer:
The average acceleration is 16.6 m/s² ⇒ 1st answer
Explanation:
A rocket achieves a lift-off velocity of 500.0 m/s from rest in
30.0 seconds
The given is:
→ The initial velocity = 0
→ The final velocity = 500 meters per seconds
→ The time is 30 seconds
Acceleration is the rate of change of velocity of the rocket
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
→ u = 0 , v = 500 m/s , t = 30 s
Substitute these values in the rule
→
m/s²
<em>The average acceleration is 16.6 m/s²</em>
Answer:
Maximum height attained by the model rocket is 2172.87 m
Explanation:
Given,
- Initial speed of the model rocket = u = 0
- acceleration of the model rocket =

- time during the acceleration = t = 2.30 s
We have to consider the whole motion into two parts
In first part the rocket is moving with an acceleration of a = 85.0
for the time t = 2.30 s before the fuel abruptly runs out.
Let
be the height attained by the rocket during this time intervel,

And Final velocity at that point be v

Now, in second part, after reaching the altitude of 224.825 m the fuel abruptly runs out. Therefore rocket is moving upward under the effect of gravitational acceleration,
Let '
' be the altitude attained by the rocket to reach at the maximum point after the rocket's fuel runs out,
At that insitant,
- initial velocity of the rocket = v = 195.5 m/s.
- a =

- Final velocity of the rocket at the maximum altitude =

From the kinematics,

Hence the maximum altitude attained by the rocket from the ground is
