Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
60.7 ml is the volume of a sample of CO2 at STP that has a volume of 75.0mL at 30.0°C and 91kPa.
Explanation:
Data given:
V1 = 75 ml
T1 = 30 Degrees or 273.15 + 30 = 303.15 K
P1 = 91 KPa
V2 =?
P2 = 1 atm or 101.3 KPa
T2 = 273.15 K
At STP the pressure is 1 atm and the temperature is 273.15 K
applying Gas Law:
= 
putting the values in the equation of Gas Law:
V2 = 
V2 = 
V2 = 60.7 ml
at STP the volume of carbon dioxide gas is 60.7 ml.
Boiling points are a measure of intermolecular forces. The intermolecular forces increase with increasing polarization of bonds. Boiling point increases with molecular weight, and with surface area.
This is somewhat of a misleading question, because all of these elements are necessary to convert motion into electricity at some point, but the generator is the last in line.
Answer:
altho I don't believe in supper stision I would say that Scorpius has killed Orion.