Explanation:
The atomic number is equal to the number of protons in an atom's nucleus. Hydrogen's atomic number is 1 because all hydrogen atoms contain exactly one proton.
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
By Boyles Law (P1V1=P2V2), substituting values in and solving for V2, we find that the new volume is 3.6 L<span />
Answer:
0.162 moles of CO₂ are produced by this reaction
Explanation:
The reaction is:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) +4H₂O(g)
As we have the volume of propane, we need to know the mass that has reacted, so we apply density's concept.
Density = Mass / Volume → Density . Volume = Mass
0.00183 g/mL . 1300 mL = Mass → 2.379 g
We determine the moles → 2.379 g . 1mol / 44 g = 0.054 moles
Ratio is 1:3. 1 mol of propane can produce 3 moles of dioxide
Then, 0.054 moles may produce (0.054 .3)/1 = 0.162 moles
The inner diameter for a steel stack that exhausts 1,200 m3/min of gases at 1 atm and 400 k is 1.45 m
<h3>What is Stack Height ?</h3>
Stack height means the distance from the ground-level elevation at the base of the stack to the crown of the stack.
If a stack arises from a building or other structure, the ground-level elevation of that building or structure will be used as the base elevation of the stack.
Given is a steel stack that exhausts 1,200 cu.m/min of gases
P= 1 atm and
T= 400 K
maximum expected wind speed at stack height of 12 m/s
The formula for the diameter of chimney

Q =1200 cu.m/min
= 1200 * 0.0166 = 19.92 cu.m/sec
Velocity = 12m/s

d= 1.45 m
Therefore The inner diameter for a steel stack that exhausts 1,200 m3/min of gases at 1 atm and 400 k is 1.45 m.
To know more about Stack Height
brainly.com/question/24625453
#SPJ4