Technology is anything made my man to make tasks easier. So yes, a screwdriver is technology.
<span>M(HCl) * </span><span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(<span>NaO<span>H)
</span></span></span>
M(HCl) = 0.35
<span>V(HCl) = 45mL
</span>M(NaOH)= 0.35
now, solne for V(NaOH) by putting these values in the above equation.
M(HCl) * <span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(NaOH)</span>
<span>0.35 * 45 = 0.35 * V(NaOH)</span>
<span>V(NaOH) = 45 mL</span>
They are compressed so that a larger amount of gas can be stored in a smaller container. A greater mass confined to a smaller volume makes transporting and storing of gases easier. Increasing temperature increases pressure, and the cylinders might explode. Before compressed oxygen can be breathed, it must be decompressed.
Answer:
The correct movement would be -
1. Water - into solution A.
2. NaCl - into solution A.
3. glucose - into Solution B.
4. Albumin - neither.
Explanation:
All the substances are separated by the semipermeable membrane and the semipermeable membrane allows the only small molecule to pass through it. So the movement of the given substance would be -
1. Water - into solution A.
Water molecules are small and can easily pass through the semipermeable membrane as it is given that the solution b has low solute concentration and solution A has high solute concentration. It is known that the movement of the solvent always takes place from low solute concentration to high so the movement of water will be into solution A.
2. NaCl - into solution A.
The movement of small ionic molecule NaCl is always from high to low concentration as it is given that solution B has high concentration than solution A so movement will take place into solution A.
3. glucose - into Solution B.
It is also a small molecule and moves from the high glucose region to the low glucose concentration region, in solution A the concentration of glucose is high than solution B so movement would be into solution B.
4. Albumin - neither.
Albumin is a protein which is macromolecule and large in size to pass through the semipermeable membrane so, albumin move neither solution A nor solution B.
Answer: I belive the answer is A
Explanation: