Answer is: the energy of exactly one photon of this light is 4.75·10⁻¹⁹ J.
Photon energy equation: E = h·ν.
E - energy of one photon.
ν- frequency.
h - Planck's constant.
ν = 7.17·10¹⁴ Hz.
h = 6.63·10⁻³⁴ J·s.
E = 6.63·10⁻³⁴ J·s · 7.17·10¹⁴ Hz.
E = 4.75·10⁻¹⁹ J.
It has Covalent bond.........
Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2
Answer:
False
Explanation:
The first reaction is;
NO(g) + 1/2O2(g) ---->NO2(g)
K= [NO2]/[NO] [ O2]^1/2
The second reaction is;
2NO(g) + O2(g) ---->2NO2(g)
K'= [NO2]^2/[NO]^2 [O2]
It now follows that;
K'= K^2
Hence the statement in the question is false
NaHCO3 = No. of atoms are 1 sodium + 1 Hydrogen + 1 carbon + 3 oxygens = 6 atoms per molecule.
so a total of 3 oxygens