Volume of water displaced is equal to the volume of the metal. So 41 - 20 = 21 ml. Density = mass / volume so density = 159 / 21 = 7.57 g/ml
Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Answer:
Percentage dissociated = 0.41%
Explanation:
The chemical equation for the reaction is:

The ICE table is then shown as:

Initial (M) 1.8 0 0
Change (M) - x + x + x
Equilibrium (M) (1.8 -x) x x
![K_a = \frac{[C_3H_6ClCO^-_2][H^+]}{[C_3H_6ClCO_2H]}](https://tex.z-dn.net/?f=K_a%20%20%3D%20%5Cfrac%7B%5BC_3H_6ClCO%5E-_2%5D%5BH%5E%2B%5D%7D%7B%5BC_3H_6ClCO_2H%5D%7D)
where ;


Since the value for
is infinitesimally small; then 1.8 - x ≅ 1.8
Then;




Dissociated form of 4-chlorobutanoic acid = 
Percentage dissociated = 
Percentage dissociated = 
Percentage dissociated = 0.4096
Percentage dissociated = 0.41% (to two significant digits)
Answer:
It has 6 protons and its Carbon 14
Explanation: