Water go through areas of high to low concentration in this case osmosis.
Answer:
Rate depends on the rate constant. The rate constant depends on temperature and activation energy. If you have lower activation energy the rate will be higher. This is why catalysts are added since catalysts provide an alternate pathway that requires lower activation energy and catalysts are added to increase the rate of reaction.
Explanation:
This is only the answer if you were asking:
"Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy?"
Thats what I understood about your question.
Answer:
H2O molecules are thus able to form an average of 4 H-bonds. H2O has a higher boiling point than NH3 because (i) the H-bonds are stronger and (ii) it contains twice as many H-bonds. H2O has a higher boiling point than HF because it contains twice as many H- bonds, despite these being individually weaker.
Explanation:
hope this is helpful
Answer:
C
cell wall only in plants
chloroplast only in plants
enlarged vacuoles only in plants
cell membrane in both
hope this helps :)
Explanation:
The first part of two is heat, not temperature, once that is cleared up: starting from 3: temperature, concentration, collisions, catalytic converter, surface area