Answer:
The weights of each cylinder and prism are 3 and 4 ounces, respectively.
Step-by-step explanation:
Let be
and
the masses of a cylinder and a prism, measured in ounces, respectively. After a careful reading of the statement we get the following linear equations by interpretation:
i) <em>She found that 4 cylinders and 5 prisms weigh 32 ounces:</em>
(Eq. 1)
ii) <em>And that 1 cylinder and 8 prisms weigh 35 ounces:</em>
(Eq. 2)
Now we solve the system of linear equations algebraically:
From (Eq. 2):

(Eq. 2) is (Eq. 1):





From (Eq. 2):



The weights of each cylinder and prism are 3 and 4 ounces, respectively.
Answer:
The length of the line is PQ as this line is parallel to the x - axis. So, the length of the line is the summation of 10 from second quadrant and 20 from first quadrant. So, the sum is 30. Hence the length of the line is 30 units.
Step-by-step explanation:
The length of a line segment can be measured by measuring the distance between its two endpoints. It is the path between the two points with a definite length that can be measured. Explanation: On a graph, the length of a line segment can be found by using the distance formula between its endpoints.
Answer:
x = 12
Step-by-step explanation:
Solve for x:
(-3 x)/2 - 9 = -27
Put each term in (-3 x)/2 - 9 over the common denominator 2: (-3 x)/2 - 9 = (-18)/2 - (3 x)/2:
(-18)/2 - (3 x)/2 = -27
(-18)/2 - (3 x)/2 = (-3 x - 18)/2:
(-3 x - 18)/2 = -27
Multiply both sides of (-3 x - 18)/2 = -27 by 2:
(2 (-3 x - 18))/2 = -27×2
(2 (-3 x - 18))/2 = 2/2×(-3 x - 18) = -3 x - 18:
-3 x - 18 = -27×2
2 (-27) = -54:
-3 x - 18 = -54
Add 18 to both sides:
(18 - 18) - 3 x = 18 - 54
18 - 18 = 0:
-3 x = 18 - 54
18 - 54 = -36:
-3 x = -36
Divide both sides of -3 x = -36 by -3:
(-3 x)/(-3) = (-36)/(-3)
(-3)/(-3) = 1:
x = (-36)/(-3)
The gcd of -36 and -3 is -3, so (-36)/(-3) = (-3×12)/(-3×1) = (-3)/(-3)×12 = 12:
Answer: x = 12
Answer:
puedes resolver de dos maneras si diste teorema de Pitágoras lo aplicas
hipotenusa al cuadrado = cateto 2 +cateto 2 ( el 2 significa al cuadrado)
sustituyes
hipotenusa= 4m
cateto= 2,5
hay que hallar el otro cateto que nos daría la altura a la que está la escalera
despejamos y tenemos
cateto 2= hip2 -cat2
cat2=(4)2-(2,5)2=
= 16-6,25=9,75
luego hallamos la raíz cuadrada de 9,75= 3,12
la altura a la que se encuentra es 3,12m
-si aun no diste Pitágoras podes representarlo en una hoja utilizando cm en lugar de metros( a escala). trazas el triángulo rectángulo la base te la da la distancia a la cual se encuentra la escalera de la pared es decir 2,5cm trazas la hipotenusa de 4cm de manera que coincida con el cateto opuesto , y mides el valor de este ,será de 3,12cm no olvides que la respuesta la debes dar en metros ya que es la unidad de medida que te da.