I FOUND YOUR COMPLETE QUESTION IN OTHER SOURCES.
PLEASE SEE ATTACHED IMAGE.
First, we rewrite both functions correctly:
f (x) = 0.5 ^ x
g (x) = 0.25 ^ x
We observe that they are exponential functions, where, rewriting:
f (x) = (1/2) ^ x
g (x) = (1/4) ^ x
We observe that both graphs present an exponential decay where, f (x)> g(x), since, the rate of change of f (x) (1/2) is greater than the rate of change of g (x) ( 1/4).
Answer:
as -> infinity, f (x)> g (x) *
If we draw a rhombus OABC on a coordinate grid with one vertex at the point O (0,0)
and let its height be 1 then (using the Pythagoras theorem) the coordinates of the 4 points will be as follows:-
O = (0,0) , A = (1, 1), B = (sqrt2+ 1 , 1) , C = (sqrt2, 0)
Slope of the diagonal OB = 1 / (sqrt2 + 1)
Slope of the other diagonal AC = - 1 / (sqrt2 - 1)
Product of the slopes = - 1 / ( sqrt2 + 1)(sqrt2 - 1) = -1 / 1 = -1
This proves that the diagonals are perpendicular.
The answer is C. x=3 2(3)^3=54
Answer:
"all real numbers"
Step-by-step explanation:
This is an exponential function. The domain of the basic exponential function 3^x is "all real numbers." This domain also applies to f(x) = 3^x - 2.