The answer is D, the kinetic energy of the water molecules begins to increase. When you heat up a pot of water, the water molecules begin to move very fast. Thus, stating that the kinetic energy of water molecules increase since the water molecules go from moving a little bit to moving really fast! I hope this could help!
Answer:
5 Br₂ + S₂O₃²⁻ + 5 H₂O ⇒ 10 Br⁻ + 2 SO₄²⁻ + 10 H⁺
Explanation:
We will balance the redox reaction through the ion-electron method.
Step 1: Identify both half-reactions
Reduction: Br₂ ⇒ Br⁻
Oxidation: S₂O₃²⁻ ⇒ SO₄²⁻
Step 2: Perform the mass balance, adding H⁺ and H₂O where appropriate
Br₂ ⇒ 2 Br⁻
5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺
Step 3: Perform the charge balance, adding electrons where appropriate
2 e⁻ + Br₂ ⇒ 2 Br⁻
5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺ + 10 e⁻
Step 4: Make the number of electrons gained and lost equal
5 × (2 e⁻ + Br₂ ⇒ 2 Br⁻)
1 × (5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺ + 10 e⁻)
Step 5: Add both half-reactions
5 Br₂ + S₂O₃²⁻ + 5 H₂O ⇒ 10 Br⁻ + 2 SO₄²⁻ + 10 H⁺
You know oxygen is the limiting reactant (since it says there is excess hydrogen). So, use stoichiometry based on the given number of oxygen moles:
The correct option is 2.
For a chemical equation to be balanced, the number of atoms of each element present in the reactants must be the same with that present in the products. If the number of atom of any element at any of the two side of the reaction is not the same, then the equation is not balanced. Looking at the options given above, it will be noticed that for option 2, the number of Sr atom at the reactant side is 1 while at the product side it is 2. This shows that the equation is not balanced.
Answer:
Sedimentary only
Explanation:
when compacting and cementing happens then a sedimentary rock can and is made!
hope this helps!