Krafla Volcano in Iceland,
Answer is: Velocity and spacing of particles is reduced and Volume of substance decreases relative to temperature decrease.
Charles' Law (The Temperature-Volume Law) - the volume of a given amount of gas held at constant pressure is directly proportional to the Kelvin temperature:
V₁/T₁ = V₂/T₂.
When temperature goes down, the volume also goes down.
Velocity is equivalent to a specification of its speed and direction of motion, it is a physical vector quantity. Less enegry (lower temperature), lower the velocity.
Answer:
The equilibrium shifts to the left, and the concentration of Ba2+(aq) decreases
Explanation:
Whenever a solution of an ionic substance comes into contact with another ionic compound with which it shares a common ion, the solubility of the ionic substance in solution decreases significantly.
In this case, both BaSO4 and Na2SO4 both possess the SO4^2- anion. Hence SO4^2- anion is the common ion. Given the equilibrium;
BaSO4(s) <—> Ba2+ (aq) + SO4 2- (aq), addition of Na2SO4 will decrease the solubility of BaSO4 due to the presence of a common SO4^2- anion compared to pure water.
This implies that the equilibrium will shift to the left, (more undissoctiated BaSO4) hence decreasing the Ba^2+(aq) concentration.
<span>The elastic potential energy stored in the stretched rubber band changes to kinetic energy.</span>
Answer:
The enthalpy change during the reaction is -199. kJ/mol.
Explanation:

Mass of solution = m
Volume of solution = 100.0 mL
Density of solution = d = 1.00 g/mL

First we have to calculate the heat gained by the solution in coffee-cup calorimeter.

where,
m = mass of solution = 100 g
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 2.242 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -199. kJ/mol.