1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
7

A recipe calls for cup of broth. The largest volume-measuring tool that Tabitha has is a teaspoon. She knows that there are 16 t

ablespoons in 1 cup and 3 teaspoons in 1 tablespoon. How many teaspoons of broth should she use?
Mathematics
2 answers:
Artist 52 [7]3 years ago
5 0
1c = 16t = x(\frac{1}{3})
1c = 16t = 16 X 3
1c = 16t = 48

She should use 48 teaspoons of broth. 
jekas [21]3 years ago
3 0
Hey there

We know that a recipe calls for cup of broth. The largest volume-measuring tool that Tabitha has is a teaspoon. She knows that there are 16 tablespoons in 1 cup and 3 <span>teaspoons in 1 tablespoon.  </span>

To solve the problem we have to use multiplication 
<span>
16 x 3 = 48 

 </span>She should use 48 teaspoons of broth. 

You might be interested in
Dori and Malory are tracking their steps taken as a health goal. Dori leaves her house at 12:00 p.m. and walks at 50 steps per m
gladu [14]
Let n = minutes since 12:00 pm when Malory catches up to Dori.

Dori travels
(50 steps/min)*(n minutes) = 50n steps

Malory begins walking at 12:20 pm, so she walks for (n - 20) minutes. She travels
(90 steps/min)*(n - 20  min) = 90n - 1800 steps

Equate the steps traveled by Dori and Malory.
90n - 1800 = 50n
40n = 1800
n = 45 min

The time corresponding to n = 45 min is 12:45 pm

Answer: 12:45 pm

7 0
3 years ago
What do I do on this problem please help
insens350 [35]
(-1.0) (-4,-1) (-1,-5) hopefully this helps (x,y)

7 0
4 years ago
Suppose a city with population 900,000 has been growing at a rate of 4% per year. If this rate continues, find the population of
Juli2301 [7.4K]

Answer: 2,306,973.7 rounded... 2,306,974

900,000(1+.04)^24

8 0
3 years ago
I need help simplifying this expression<br><br> 9•(7-4)^2+9
marshall27 [118]

Answer:

90

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • A manufacturer inspects 400 personal video players that 397 of the have no defects. The manufacturer sent a shipment of 1,500 vi
    14·1 answer
  • Evaluate the expression 43 + [(96 ÷ 8) × 5] – 42. I need a quick and simple answer, Thank you
    12·1 answer
  • What is 500 times H88
    7·1 answer
  • Please help urgent!!
    5·1 answer
  • Alfred has two cans containing biscuit dough. The cans are cylindrical and their dimensions (in inches) are as follows. • Can A:
    15·1 answer
  • A federal agency responsible for enforcing laws governing weights and measures routinely inspects package to determine whether t
    6·1 answer
  • 10. Both x and y vary inversely with each other. When x is 10, y is 6,which of the following is not a possible pair of correspon
    14·1 answer
  • What is the square root of 4.84
    15·2 answers
  • Question 9 of 10 What is the approximate value of x in the diagram below? (Hint: You will need to use one of the trigonometric r
    12·1 answer
  • What is the best way to show your work for 2/3 times 9/12?<br><br> If anyone can help please help me
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!