Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
mass
Explanation:
As this is directly related to inertia. Inertia is the property of unit which resists the change of state of rest or motion
Answer:
The angle is 
Explanation:
From the question we are told that
The mass is 
The radius is 
The speed is 
According to the law of energy conservation
The potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e

=> 
Here h is the vertical distance traveled by the mass which is also mathematically represented as

So
![\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2]](https://tex.z-dn.net/?f=%5Ctheta%20%20%20%3D%20sin%20%5E%7B-1%7D%20%5B%20%5Cfrac%7B1%7D%7B2%2A%20g%2A%20r%20%7D%20%2A%20%20v%5E2%5D)
substituting values
![\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2]](https://tex.z-dn.net/?f=%5Ctheta%20%20%20%3D%20sin%20%5E%7B-1%7D%20%5B%20%5Cfrac%7B1%7D%7B2%2A%209.8%2A%201.1%20%7D%20%2A%20%20%283.57%29%5E2%5D)

thrust force getting from the burning of mass should balance the weight of the rocket
here thrust force is given as

now by force balance we can say

now plug in all values in this



so rate of mass burning per second will be 5600 kg per second in order to lift up the rocket