1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
3 years ago
8

The mass of an object with 500j of kenetic energy moving with a velocity of 5 m/s is

Physics
1 answer:
saw5 [17]3 years ago
7 0
The moving energy is 5,000 m/s
You might be interested in
If two point sources of light are being imaged by this telescope, what is the maximum wavelength λ at which the two can be resol
Mrrafil [7]

Answer:

The maximum wavelength is 492 nm.

Explanation:

Given that,

Angular separation \theta=3.0\times10^{-5}\ rad

Suppose a telescope with a small circular aperture of diameter 2.0 cm.

We need to calculate the maximum wavelength

Using formula of angular separation

\sin\theta=\dfrac{1.22\lambda}{d}

\lambda=\dfrac{d\sin\theta}{1.22}

Put the value into the formula

\lambda=\dfrac{2.0\times\sin(3\times10^{-5})}{1.22}

For small angle \sin\theta\approx\theta

\lambda=\dfrac{0.02\times3\times10^{-5}}{1.22}

\lambda=4.92\times10^{-7}\ m

\lambda=492\ nm

Hence, The maximum wavelength is 492 nm.

5 0
3 years ago
A power lifter performs a dead lift, raising a barbell with a mass of 305 kg to a height of 0.42 m above the ground, giving the
Ann [662]

Answer:

Explanation:

Before it hits the ground:

The initial potential energy = the final potential energy + the kinetic energy

mgH = mgh + 1/2 mv²

gH = gh + 1/2 v²

v = √(2g (H - h))

v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))

v ≈ 2.0 m/s

When it hits the ground:

Initial potential energy = final kinetic energy

mgH = 1/2 mv²

v = √(2gH)

v = √(2 * 9.81 m/s² * 0.42 m)

v ≈ 2.9 m/s

Using a kinematic equation to check our answer:

v² = v₀² + 2a(x - x₀)

v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)

v ≈ 2.9 m/s

3 0
3 years ago
CAN ANY OF YALL ANSWER DIS PLS!!!!!!!! I AM GIVING 20 POINTS BTW!!!!!!!
sveticcg [70]
PHYSICAL CHANGES :
Melting an ice cube.
Boiling water.
Mixing sand and water.
Breaking a glass.
CHEMICAL CHANGES :
Digesting food.
Cooking an egg.
Heating sugar to form caramel.
4 0
3 years ago
Which of the following best describes a plane?
zloy xaker [14]

On that list of choices, 'C' is the only "example" of a plane.
None of the choices "describes" a plane.

8 0
3 years ago
Question C) needs to be answered, please help (physics)
Zarrin [17]

(a) Differentiate the position vector to get the velocity vector:

<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>

<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>

<em></em>

(b) The velocity at <em>t</em> = 2.00 s is

<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>

<em></em>

(c) Compute the electron's position at <em>t</em> = 2.00 s:

<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>

The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:

||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m

(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that

tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s)   ==>   <em>θ</em> ≈ -79.4º

or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.

3 0
3 years ago
Other questions:
  • If an asteroid is 4 AU from the Sun, what is the period of revolution around the Sun for the asteroid?
    13·1 answer
  • What two things make up the nucleus?"
    15·2 answers
  • Which statement describes the difference between speed and velocity
    8·2 answers
  • - How long does it take a packet of length 1,000 bytes to propagate over a link of distance 2,500 km, propagation speed 2.5 *10^
    13·1 answer
  • What do you see when you stand infront of a concave mirror, beyond its focal point, and look at yourself?
    9·2 answers
  • An archer uses a bow to fire two similar arrows with the same string force. One
    7·1 answer
  • I need help with this problem​
    8·1 answer
  • You work at a retail store. Recently, paychecks have had errors and there have been many employee complaints. You have been assi
    5·2 answers
  • Can anybody help??????
    5·1 answer
  • In which scenario is work being done on an object?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!