Answer:
Energy May be measured in joule
Answer:
V = 2.87 m/s
Explanation:
The minimum speed required would be that at which the acceleration due to gravity is negated by the centrifugal force on the water.
Thus, we simply need to set the centripetal acceleration equal to gravity and solve for the speed V using the following equation:
Centripetal acceleration = V^2 / r
where r is the distance of water from the pivot or shoulder.
For our case, r will be 0.65 + 0.19 = 0.84 m
and solving the above equation we get:
9.81 = V^2 / 0.84
V^2 = 8.2404
V = 2.87 m/s
To solve this problem we will apply the concepts of energy conservation and Newton's second law that defines force as the product of the object's mass with its acceleration. Additionally we will apply concepts related to the kinematics equations of linear motion.
For conservation of energy we have that work is equal to kinetic energy therefore,


Here,
F = Force
d = Displacement
m = Mass
v= Velocity
At the same time we have the relation of

Therefore the value of the force can be interpreted as the rate of increase in energy per unit of distance, which makes it equivalent to

Applying Newton's Second Law



In 4 seconds final velocity of the object becomes



Then the work done is equal to,




Then the displacement is,




Therefore the distance moved is 16m
Answer:
The speed of the particle is 2.86 m/s
Explanation:
Given;
radius of the circular path, r = 2.0 m
tangential acceleration,
= 4.4 m/s²
total magnitude of the acceleration, a = 6.0 m/s²
Total acceleration is the vector sum of tangential acceleration and radial acceleration

where;
is the radial acceleration

The radial acceleration relates to speed of particle in the following equations;

where;
v is the speed of the particle

Therefore, the speed of the particle is 2.86 m/s
Answer:
The moon's gravity pulls the Earth to make tides.
Explanation:
The Moons Gravity Pulls On The Earth With Different Strenght Making High Tide And Low Tide.
Hope This Helps!