1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
8

***BRAINLIEST ASNWERRR***How many grams are in 34.2 moles of Lithium (Li)?​

Chemistry
1 answer:
Step2247 [10]3 years ago
3 0

Mass of Li = 237.38 g

<h3>Further explanation</h3>

The mole itself is the number of particles contained in a substance amounting to 6.02.10²³  

\large {\boxed {\boxed {\bold {mol = \frac {mass} {molar \: mass}}}}

<h3>Known</h3>

Moles of Li = 34.2

Molar mass(MW) of Li = 6.941 g/mol

then mass of Lithium (Li) :

\tt mol=\dfrac{mass}{MW}\\\\mass=mol\times MW\\\\mass=34.2\times 6,941~g/mol\\\\mass=\boxed{\bold{237.38~g}}

You might be interested in
The average kinetic energy of water molecules is greatest in which of these samples?(1) 10 g of water at 35°C(2) 10 g of water a
Ipatiy [6.2K]
The question asks about the average kinetic energy so it is not related with mass. We only need to compare the temperature. The higher temperature is, the higher kinetic energy is. So the answer is (2).
3 0
3 years ago
Read 2 more answers
Substance A has the following properties.
givi [52]

A curve of temperature vs. time for the entire heating process.

The sample is heated up to 100.°C, therefore, the heat and time required to heat the sample to its boiling point, the heat and time required to boil the sample, and the heat and time required to heat the sample from its boiling point to 100.°C are needs to be calculated.

i ) Calculating the heat and time required to heat the sample to its boiling point:

Boiling point = 85°C

C(liquid) = 2.5 J/g °C

The heat required up to melting the sample is calculated in the previous parts. Therefore, the heat required to heat the sample from -20°C to 85°C can be calculated as,

Therefore, T f = 85°C  and T i = - 20°C

Plug in the values in the specific heat formula to calculate the heat energy required to heat the sample to its melting point,

q3 = 25 g ×  2.5 J/g °C × [85 - (-20)]°C

     = 25 J/°C ×[85+20]°C

     = 6562.5 J

The total heat energy required for heating the sample from initial temperature to boiling point is:-

q1 + q2 + q3 = 500 J + 4500 J + 6562.5 J

                    = 11562.5 J

The Rate of heating = 450 J/min

450. J = 1 min

   11562.5 J = ? min

11562.5 J × 1min/450 J = 25.69 min

ii) Calculating the heat and time required to boil the sample:

∆H Vap = 500 J/g

The boiling is the phase change from liquid to gas at 85°C, therefore, the heat required to boil the sample can be determined

q4= m × ∆Hvap

    = 25 g × 500 J/g

   = 12500 J

Thus, total heat required to this phase change is q1 + q2 + q3 + q4  = 500 J + 4500 J +6562.5  J + 12500 J = 24062.5 J

The Rate of heating = 450 J / min

450 J = 1 min

24062.5 J = ? min

24062.5J ×  1min / 450 J = 53.47 min

iii) Calculating the heat and time required to heat the sample from its boiling point to 100°C

C gas = 0.5 J / g °C

The heat required to boil the sample is calculated in the previous parts. Therefore, the heat required to heat the sample from 85°C to 100°C can be calculated as,

Therefore, T f = 100.°C  and T i = 85°C

q5 = 25 g ×  0.5 J / g °C × [100 - 85] °C

    = 25 J / °C ×15 °C

    = 187.5  J

The total heat energy required for heating the sample from initial temperature to 100°C is

q1 + q2 + q3 + q4 + q5 = 500 J + 4500 J + 2625J + 12500 J + 187.5 J

                                      =24250 J

The Rate of heating = 450 J / min

  450. J = 1 min

 24250 J=? min

Thus, heating the sample to 100.°C takes a total of 53.89 min.

iv) Draw a curve of temperature vs. time for the entire heating process:-

Temperature °C     Temperature K     Heat energy (J)     Time (min)

 -40 °C                       233                             0                     0

-20 °C                          253                          500                  1.11    

Melting -20 °C             253                        5000                   11.11

85 °C                         358                         11562.5              25.69

Boiling 85 °C             358                           24062.5          53.475              

100  °C                       373                             24250          53.89

Hence, the graph for the result is in the image.

Learn more about temperature here:-brainly.com/question/24746268

#SPJ4

4 0
2 years ago
Equal moles of H2, N2, O2, and He are placed into separate containers at the same temperature. Assuming each gas behaves ideally
lbvjy [14]

Answer:

They would all exhibit the same pressure.

Explanation:

Since the same number of mole of each gas is placed in different containers, it means the gas will occupy the same volume.

Now, the gases were observed at the same temperature. This means they will all have the same pressure as their volume is the same.

Now we can further understand this by doing a simple calculation as follow:

Assumptions:

For H2:

Number of mole (n) = 1 mole

Volume (V) = 22.4L

Temperature (T) = 298K

Gas constant (R) = 0.0821 atm.L/Kmol

Pressure =..?

PV = nRT

Divide both side V

P = nRT /V

P = 1 x 0.0821 x 298 / 22.4

P = 1 atm

Therefore, H2 has a pressure of 1 atm.

For N2:

Number of mole (n) = 1 mole

Volume (V) = 22.4L

Temperature (T) = 298K

Gas constant (R) = 0.0821 atm.L/Kmol

Pressure =..?

PV = nRT

Divide both side V

P = nRT /V

P = 1 x 0.0821 x 298 / 22.4

P = 1 atm

Therefore, N2 has a pressure of 1 atm

For O2:

Number of mole (n) = 1 mole

Volume (V) = 22.4L

Temperature (T) = 298K

Gas constant (R) = 0.0821 atm.L/Kmol

Pressure =..?

PV = nRT

Divide both side V

P = nRT /V

P = 1 x 0.0821 x 298 / 22.4

P = 1 atm

Therefore, O2 has a pressure of 1 atm

For He:

Number of mole (n) = 1 mole

Volume (V) = 22.4L

Temperature (T) = 298K

Gas constant (R) = 0.0821 atm.L/Kmol

Pressure =..?

PV = nRT

Divide both side V

P = nRT /V

P = 1 x 0.0821 x 298 / 22.4

P = 1 atm

Therefore, He has a pressure of 1 atm.

From the above illustrations we can see that the gases have the same pressure since they have the same number of mole, volume and were observed at the same temperature.

4 0
3 years ago
Hello! I just need a little bit of help. I'm supposed to design an experiment on how reaction rates are determined and affected
alexandr1967 [171]
  1. Get 3 cups of water at the exact same temperature, using the thermometer to check.
  2. Label the cups as ‘whole’, ‘pieces’, and ‘crushed’
  3. Next, get something to dissolve, in this case, polident. Take one of the polident tablets and break it into 4 pieces, and set it aside.
  4. Take another polident tablet and this time put it into a different cup, and crush it. Set it aside.
  5. Keep the last tablet whole.
  6. Set up your stopwatch and drop the polident tablet that is whole in the cup labeled ‘whole’, starting the stopwatch at the same time.
  7. Watch the cup and see when the tablet is fully dissolved, then stop the stopwatch.
  8. Record the time in the table.
  9. Repeat steps 6-8 for both the ‘pieces’ and ‘crushed’ tablets.

Hope this helps! Please let me know if you need more help, or if you think my answer is incorrect. Brainliest would be MUCH appreciated. Have a great day!

Stay Brainy!

−xXheyoXx

3 0
2 years ago
1. A smoothie contains 1 banana (B), 4 strawberries (St), 1 container of yogurt (Y), and 3 ice cubes (Ic). Write a balanced equa
kvv77 [185]

Answer:

1B +4St+1Y+3lc——-> BSt4Ylc3

Explanation:

I only know the answer for the first question.

4 0
3 years ago
Other questions:
  • How many oxygen atoms are in 2.80 g of quartz?
    5·1 answer
  • Which is the function of mitochondria within a eukaryotic cell?
    6·2 answers
  • 20 POINTS TO ANYONE WHO CAN ANSWER THIS QUESTION!!!!!!!!!!!!!!!!!!!!!!!
    5·2 answers
  • A sample of gas occupies a volume of 120.0 mL at a pressure of 0.75 atm and a temperature of 295 K. What will the volume be at a
    12·1 answer
  • 53
    10·1 answer
  • 11.23mm____m<br><br> a)1,123<br> b)0.01123<br> C)0.1123<br> D)11,230
    15·1 answer
  • Examples of quantitative of quantitative data
    6·2 answers
  • 1. What would happen to the current model of the atom if new information about its structure is discovered in the future?
    5·1 answer
  • The electrons in the outermost energy level are responsible for the atoms _____. These electrons are called the _______ electron
    10·1 answer
  • Which of these prevents conduction from occurring?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!