Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
The reaction between copper II chloride and sodium sulfide as well as lead II nitrate and potassium sulfate both produce precipitates.
The solubility of a substance in water is in accordance with the solubility rules. It is possible that a solid product may be formed when two aqueous solutions are mixed together. That solid product is referred to as a precipitate.
Now, we will consider each reaction individually to decode whether or not a precipitate is possible.
- In the first reaction, we have; CuCl2(aq) + Na2S(aq) ---->CuS(s) + 2NaCl(aq). A precipitate (CuS) is formed.
- In the second reaction, Pb(NO3)2(aq) + 2KNO3(aq) ----> PbSO4(s) + KNO3(aq), a precipitate PbSO4 is formed
- In the third reaction, NH4Br(aq) + NaOH(aq) ----->NH3(g) + NaBr(aq) + H2O(l), a precipitate is not formed here.
Learn more: brainly.com/question/11969651
<u>Answer:</u> The process that is used to prepare ceramic is sintering.
<u>Explanation:</u>
Sintering is defined as the process in which number of particles are fused together to form one solid mass by the applying pressure at high temperatures.
Ceramic is an material that is made by taking mixtures of clay, earthen elements, powders and water.
When this mixture (slurry of the powders) is heated at a very high temperature and under high pressure, ceramic is formed.
Hence, the process that is used to prepare ceramic is sintering.
<span>The answer to question 2 is C. A magnifying glass is an example of a plano-convex lens, where one side of the lens is flat and the other is a convex curve. The answer to question 3 is either B or C. A converging lens is curved on both sides and so the rays of light coming out of it converge at a point, which is known as the focal point. When the object is inside the focal point, the image is real and inverted. If it is inside the focal point, the image is virtual and upright. Therefore the image in this question will be upright. The focal length is the distance between the image that is being magnified and the centre of the magnifying lens. A real image can only be formed when the object is further away from the lens than the focal length. Therefore, in this question, the image is virtual, as the object is closer to the lens than the focal length. The answer to question 4 is D because the index of refraction cannot be less than 1. The answer to question 5 is D because only concave mirrors can produce real images; other types produce virtual images. For question 6, the answer is D. In the rainbow, each of the colours refracts at a slightly different angle; red has the smallest refractive index and violet the largest. Of the options, orange is closest to red. For question 12, A is the answer. A higher operating temperature is not a reason fluorescent lamps are better than incandescent lamps because they have a lower operating temperature. Question 15: all of these are characteristics of different electromagetic waves. For question 18, B is true - special care must be taken when low illuminance is required to reduce glare. The answer to question 19 is B - a compound microscope makes use of two lenses. For question 20, the answer is 5 meters away. The illuminance (E) is equal to light intensity (I) divided by the square distance from the light source (d). Therefore, 4 = 100/d squared. To switch this around, d squared is equal to 100/4 = 25. Then find the square root of 25, which is 5.</span>