Answer:
Because water conducts electricity, so if an electrical current were to meet the water while you're in there taking a bath, you would essentially be surrounded by a huge conductor.
The <span> the Brønsted-Lowry acid donates H⁻.
In this reaction Particle that loose H⁺ is A. NH4⁺ ion.</span>
Answer:
Carbon dioxide is a chemical compound composed two oxygen atoms covalently bonded to one carbon atom. Carbon dioxide's molecular shape is linear. Also carbon dioxide exists in Earth's atmosphere as a gas. Carbon Dioxide- CO2 makes up one of the gases in our atmosphere.
Explanation:
A nuclear reactionIt’s like another particle with the release of energy
Explanation:
1. Spontaneous as written at all temperatures
C. When ΔH is negative and ΔS is positive, the sign of ΔG will always be negative, and the reaction will be spontaneous at all temperatures.
2. Spontaneous in reverse at all temperatures
A. When ΔH is positive and ΔS is negative, the sign of ΔG will always be positive, and the reaction can never be spontaneous.
3. Spontaneous as written above a certain temperature
B. ΔH is positive and ΔS is positive - an endothermic reaction (positive ΔH) that also displays an increase in entropy (positive ΔS). It is the entropy term that favors the reaction. Therefore, as the temperature increases, the TΔS term in the Gibbs free energy equation will begin to predominate and ΔG will become negative.
4. Spontaneous as written below a certain temperature
D. ΔH negative and ΔS is negative - When the reaction is exothermic (negative ΔH) but undergoes a decrease in entropy (negative ΔS), it is the enthalpy term which favors the reaction. In this case, a spontaneous reaction is dependent upon the TΔS term being small relative to the ΔH term, so that ΔG is negative. The freezing of water is an example of this type of process. It is spontaneous only at a relatively low temperature.