Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Answer:
D
Explanation:
The pineal gland regulates salt and water levels.
Answer:
136.63 °C
Explanation:
ΔTb=Tb solution - Tb pure
Where; Tb pure = 133.60°C
molar mass of solute = 121.14 g/mol
number of moles of solute; 52.2g/121.14 g/mol = 0.431 moles
molality = 0.431 moles/350 * 10^-3 = 1.23 molal
Then;
ΔTb = Kb * m * i
Kb = 2.46°C kg mol^-1
m = 1.23 molal
i = 1
ΔTb = 2.46 * 1.23 * 1
ΔTb = 3.03 °C
Hence;
Tb solution = ΔTb + Tb pure
Tb solution = 3.03 °C + 133.60°C
Tb solution = 136.63 °C
Answer:
4.23.
Explanation:
<em>∵ pH = - log[H⁺].</em>
<em>For weak acids:</em>
∵ [H⁺] = √(ka)(c).
∴ [H⁺] = √(3.5 × 10⁻⁸)(0.10 M) = 5.92 x 10⁻⁵.
∴ pH = - log[H⁺] = - log(5.92 x 10⁻⁵) = 4.2279 ≅ 4.23.