For a human jumper to reach a height of 110 cm, the person will need to leave the ground at a speed of 4.65 m/s.
We can calculate the initial speed to reach 110 cm of height with the following equation:

Where:
: is the final speed = 0 (at the maximum height of 110 cm)
: is the initial speed =?
g: is the acceleration due to gravity = 9.81 m/s²
h: is the height = 110 cm = 1.10 m
Hence, the <u>initial velocity</u> is:

Therefore, the initial speed that the person must have to reach 110 cm is 4.65 m/s.
You can see another example here: brainly.com/question/13359681?referrer=searchResults
I hope it helps you!
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
The radius of the cylinder is equal to half the diameter:

The volume of the cylinder is given by:

where h is the heigth of the cylinder. Converting into meters,

And the density of the material will be given by the ratio between the mass and the volume:
