Answer:
The volume is decreasing at 160 cm³/min
Explanation:
Given;
Boyle's law, PV = C
where;
P is pressure of the gas
V is volume of the gas
C is constant
Differentiate this equation using product rule:

Given;
(increasing pressure rate of the gas) = 40 kPa/min
V (volume of the gas) = 600 cm³
P (pressure of the gas) = 150 kPa
Substitute in these values in the differential equation above and calculate the rate at which the volume is decreasing (
);
(600 x 40) + (150 x
) = 0

Therefore, the volume is decreasing at 160 cm³/min
Explanation:
a. Average speed = distance / time
= 100 m / 70 s
= 1.43 m/s
b. Average displacement = displacement / time
= 0 m / 70 s
= 0 m/s
Distance is the length of the path traveled. Displacement is the difference between the final position and initial position.
Then the coin will float on the surface of the liquid in the eishimg well.
The wavelength in nanometers of light when the energy is 1. 91 × 10^6 j for a mole of photons is <u>62. 8 nm.</u>
Wavelength is the distance among the same points (adjacent crests) within the adjoining cycles of a waveform signal propagated in space or along a cord. In wi-fi structures, this period is typically specified in meters (m), centimeters (cm), or millimeters (mm).
The wavelength is the distance between wave crests, and it is going to be the same for troughs. The frequency is the variety of vibrations that skip over a given spot in one 2nd, and it's far measured in cycles consistent with the second (Hz) (Hertz).
Frequency is the ratio of pace and wavelength in relation to speed. In comparison, wavelength refers to the ratio of pace and frequency. Audible sound waves are characterized by way of a frequency range of 20 to 20 kHz. In contrast, the variety of wavelengths of visible light is from four hundred to seven hundred nm.
<u>calculation:-</u>
*E=hc/λ
1.91 × 10^6 J = (6.62610⁻³⁴) (3.00*10⁸) / λ
λ= (6.62610⁻³⁴) (3.00*10⁸) / 1.91 × 10⁶ J
λ= 1.0410⁻³¹× 10⁻⁹ × 6.022*10²³
=<u> 62. 8 nm </u>
Learn more about wavelength here:-brainly.com/question/10728818
#SPJ4
The resulting positive amplitude of the two waves after the superimposition is 4.30 cm.
<h3>
Amplitude of the waves</h3>
The amplitude of the waves is the maximum displacement of the wave. This is the vertical position of the wave measured from the zero origin.
After the superimposition of the two similar waves, the resulting amplitude will be less than the initial amplitude of the wave with the highest vertical height since the superimposition creates destructive interference.
Resulting amplitude of the two waves is calculated as;
A = 5.4 cm - 1.10 cm
A = 4.30 cm
Thus, the resulting positive amplitude of the two waves after the superimposition is 4.30 cm.
Learn more about amplitude of waves here: brainly.com/question/25699025