It would be 105 students because you would divide the 280 students into 8 and then get 35, then multiply that by 3 representing the 3/8s of the students
The answer is B I asked my dad and he is supppperrrr smart lol
Answer:
the answer is 9 11/15 or 26/15 in improper fraction form.
We have been given two points.
and
. We are asked to find the point B such that it divides line segment AC so that the ratio of AB to BC is 4:1.
We will use segment formula to solve our given problem.
When a point P divides segment any segment internally in the ratio
, then coordinates of point P are:
![[\right x=\frac{mx_2+nx_1}{m+n},y=\frac{my_2+ny_1}{m+n}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5Cleft%5D)
and
.

Upon substituting our given information in above formula, we will get:
![[\right x=\frac{4(3)+1(3)}{4+1},y=\frac{4(9)+1(4)}{4+1}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B4%283%29%2B1%283%29%7D%7B4%2B1%7D%2Cy%3D%5Cfrac%7B4%289%29%2B1%284%29%7D%7B4%2B1%7D%5Cleft%5D)
![[\right x=\frac{12+3}{5},y=\frac{36+4}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B12%2B3%7D%7B5%7D%2Cy%3D%5Cfrac%7B36%2B4%7D%7B5%7D%5Cleft%5D)
![[\right x=\frac{15}{5},y=\frac{40}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B15%7D%7B5%7D%2Cy%3D%5Cfrac%7B40%7D%7B5%7D%5Cleft%5D)
![[\right x=3,y=8\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D3%2Cy%3D8%5Cleft%5D)
Therefore, the coordinates of point B would be
.
Answer:
b. g(x) = ƒ(3x)
Step-by-step explanation:
We can use the graph to find the transformation which has been performed to obtain g.
g(x) is more stretched than x which means the function values are multiplied by some integer to obtain g(x). <u>This eliminates the options a and d.</u>
Now to check which factor is used to transform the function f(x) we can divide the x-coordinates of the points of new and old function.
So,
6/2 = 3
-6/-2 = 3
The function is stretched by a factor of 3.
Hence, the correct answer is:
b. g(x) = ƒ(3x) ..