Answer:<em> Hydrogen can lose as much as possible there is no limits to it.</em>
<em>Hope this helps!</em>
<em>I am joyous to assist you anytime!</em>
<em>-Jarvis</em>
<em>Extras: Hydrogen is the chemical element with the symbol H and atomic number 1. hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe (;</em>
Answer:
2-4 minutes
Explanation:
Fastest changing temperature means larger change in temperature when subtracting final temperature from initial temperature in a given time period (given time period is 2 minutes for all the options)
For 0-2 minutes, our final temperature was 40 (at 2 min) and initial temperature was 20 (at 0 min), thus temperature change was only 20 C.
For 2-4, our final temperature was 80 (at 4 min) and initial temperature was 40 (at 2 min) thus temperature change was 40 C.
For 4-6, our final temperature was 100 (at 6 min) and initial temperature was 80 (at 4 min) thus temperature change was 20 C.
We are not given temperature at 8 min so option D is invalid.
As we can clearly see that in a given 2 minute period, option B has the fastest change because it changed 40C when compared to other options that changed only 20C from starting temperature.
Hope that makes sense.
Answer:

Explanation:
1. Mass of zinc
The density of zinc is 7.14 g/cm³
D = m/V

2. Volume of aluminium
The density of aluminium is 2.60/cm³.

Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n=
being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole. - R= 0.082

- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082
× 353 K
Solving:
V = (4.745 moles× 0.082
× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more:
First, we divide the number of atoms of silicon given in the problem above by Avogadro's number 6.6022 x10^23. This will give us the number of moles of silicon. Then, we multiply the number of moles by the molar mass of silicon.
number of moles = (3.6 x 10^20 atoms/6.022x10^23 atoms) = 5.97x10^-4 moles
Then, multiplying by the molar mass
(5.97x10^-4 moles)(28.0855 g/mol) = 0.017 grams