<span>What is the maximum number of electrons in the following energy level? n = 2
2
</span>
Answer is: <span>yield of a reaction is 56,4%.
</span>Chemical reaction: PCl₃ + 3H₂O → 3HCl + H₃PO₃.
m(PCl₃) = 200 g.
m(HCl) = 91,0 g.
n(PCl₃) = m(PCl₃) ÷ M(PCl₃).
n(PCl₃) = 200 g ÷ 137,33 g/mol.
n(PCl₃) = 1,46 mol.
n(HCl) = m(HCl) ÷ M(HCl).
n(HCl) = 91 g ÷ 36,45 g/mol.
n(HCl) = 2,47 mol.
From reaction: n(PCl₃) : n(HCl) = 1 : 3.
n(HCl) = 1,46 mol · 3 = 4,38 mol.
Yield of reaction: 2,47 mol ÷ 4,38 mol · 100% = 56,4%.
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.
Answer:
6.02 × 10²³ atoms
Explanation:
The number 6.02 × 10²³ is called Avogadro number. It is the number of atoms, ions and molecules in one gram atoms of an element, one gram ions of substance and one gram molecule of a compound.
For example:
32 g of oxygen = one mole = 6.02 × 10²³ atoms O.
1.008 g of hydrogen = one mole = 6.02 × 10²³ atoms of H.
or
18 g of H₂O =one mole = 6.02 × 10²³ molecules of H₂O
44 g of CO₂ = one mole = 6.02 × 10²³ molecules of CO₂
or
62 g of NO₃⁻ = one mole of NO₃⁻ = 6.02 × 10²³ ions of NO₃⁻