The slope-intercept form is y = mx + b.
Following that kind of form becomes
2y = -8x + 1
y =(-8x + 1)/2
y = -4x + 1/2
Hope this helps <span>✌️</span>☺️✌️
Answer:
7x^6×(9×^6-5)
Step-by-step explanation:
63x^12-35x^6
7x^6×(9×^6-5)
Answer:
A. Decreasing linear
Step-by-step explanation:
![\displaystyle\lim_{(x,y)\to(0,0)}\frac{\left(x+23y)^2}{x^2+529y^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7B%28x%2Cy%29%5Cto%280%2C0%29%7D%5Cfrac%7B%5Cleft%28x%2B23y%29%5E2%7D%7Bx%5E2%2B529y%5E2%7D)
Suppose we choose a path along the
![x](https://tex.z-dn.net/?f=x)
-axis, so that
![y=0](https://tex.z-dn.net/?f=y%3D0)
:
![\displaystyle\lim_{x\to0}\frac{x^2}{x^2}=\lim_{x\to0}1=1](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto0%7D%5Cfrac%7Bx%5E2%7D%7Bx%5E2%7D%3D%5Clim_%7Bx%5Cto0%7D1%3D1)
On the other hand, let's consider an arbitrary line through the origin,
![y=kx](https://tex.z-dn.net/?f=y%3Dkx)
:
![\displaystyle\lim_{x\to0}\frac{(x+23kx)^2}{x^2+529(kx)^2}=\lim_{x\to0}\frac{(23k+1)^2x^2}{(529k^2+1)x^2}=\lim_{x\to0}\frac{(23k+1)^2}{529k^2+1}=\dfrac{(23k+1)^2}{529k^2+1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B%28x%2B23kx%29%5E2%7D%7Bx%5E2%2B529%28kx%29%5E2%7D%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B%2823k%2B1%29%5E2x%5E2%7D%7B%28529k%5E2%2B1%29x%5E2%7D%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B%2823k%2B1%29%5E2%7D%7B529k%5E2%2B1%7D%3D%5Cdfrac%7B%2823k%2B1%29%5E2%7D%7B529k%5E2%2B1%7D)
The value of the limit then depends on
![k](https://tex.z-dn.net/?f=k)
, which means the limit is not the same across all possible paths toward the origin, and so the limit does not exist.
Answer:
9 students on the committee are males
Step-by-step explanation:
As per the statement:
There are 15 students on a yearbook committee.
⇒Total students on a yearbook committee = 15
⇒
....[1]
It is given that:
40% of the students are females
⇒![\text{Female students} = \frac{40}{100} \cdot 15 = 6](https://tex.z-dn.net/?f=%5Ctext%7BFemale%20students%7D%20%3D%20%5Cfrac%7B40%7D%7B100%7D%20%5Ccdot%2015%20%3D%206)
Substitute in [1] we have;
![\text{Male students} + 6 = 15](https://tex.z-dn.net/?f=%5Ctext%7BMale%20students%7D%20%2B%206%20%3D%2015)
Subtract 6 from both sides we have;
![\text{Male students}= 9](https://tex.z-dn.net/?f=%5Ctext%7BMale%20students%7D%3D%209)
Therefore, 9 students on the committee are males