The areas of the figures are 4(x + 1), 7(d + 4) and y(y + 3)
<h3>How to determine the total areas?</h3>
<u>The figure 1</u>
In this figure, we have
Length = x + 1
Width = 4
The area is calculated as:
Area = Length * Width
So, we have
Area = 4(x + 1)
<u>The figure 2</u>
In this figure, we have
Length = d + 4
Width = 7
The area is calculated as:
Area = Length * Width
So, we have
Area = 7(d + 4)
<u>The figure 3</u>
In this figure, we have
Length = y + 3
Width = y
The area is calculated as:
Area = Length * Width
So, we have
Area = y(y + 3)
Hence, the areas of the figures are 4(x + 1), 7(d + 4) and y(y + 3)
Read more about areas at:
brainly.com/question/24487155
#SPJ1
Answer:
The last option
V = (-1.5,3)
other options dont lie where V is exact
V is only Exact at (-1.5,3)
Answer:

Step-by-step explanation:
You have the following differential equation:
(1)
In order to find the solution to the equation, you can use the method of the characteristic polynomial.
The characteristic polynomial of the given differential equation is:

The solution of the differential equation is:
(2)
where m1 and m2 are the roots of the characteristic polynomial.
You replace the values obtained for m1 and m2 in the equation (2). Then, the solution to the differential equation is:
