Answer:
a(n)=1.15[a(n-1)]
Step-by-step explanation:
we know that

Let
a0 -----> the length of the original copy
<em>The first copy is equal to</em>
a1=1.15(a0)
<em>The second copy is </em>
a2=1.15[1.15(a0)] or a2=1.15[a1]
<em>The third copy is</em>
a3=1.15{1.15[1.15(a0)]} or a3=1.15[a2]
therefore
A recursive formula will be
a(n)=1.15[a(n-1)]
Answer:
x=15
Because 3x15=45
Hope that helped!
Let's solve this system of equations through substitution.
We have these two equations.
-7x-2y=14
6x+6y=18
Now let divide the second equation by 6.
6x+6y=18 ----> x+y=3
Next, let us move y to the right side of the equation.
x+y=3 -------> x=3-y (x equals 3-y)
Because we found out that what x is in terms of y, we can input that in for every instance of x in this equation below.
-7x-2y=14 becomes -7(3-y)-2y=14 (Why? Because x equals 3-y!)
We have a one variable equation now and can solve for y.
-7(3-y)-2y=14
-21+7y-2y=14
5y=35
y=7
Plug in 7 for y in any equation to find x.
x+y=3
x+7=3
x=-4
answer: x=-4, y=7
x makes a linear pair with 120 degrees, so is supplementary:
Answer: 60 degrees
<h3>Answer:</h3>
- ABDC = 6 in²
- AABD = 8 in²
- AABC = 14 in²
<h3>Explanation:</h3>
A diagram can be helpful.
When triangles have the same altitude, their areas are proportional to their base lengths.
The altitude from D to line BC is the same for triangles BDC and EDC. The base lengths of these triangles have the ratio ...
... BC : EC = (1+5) : 5 = 6 : 5
so ABDC will be 6/5 times AEDC.
... ABDC = (6/5)×(5 in²)
... ABDC = 6 in²
_____
The altitude from B to line AC is the same for triangles BDC and BDA, so their areas are proportional to their base lengths. That is ...
... AABD : ABDC = AD : DC = 4 : 3
so AABD will be 4/3 times ABDC.
... AABD = (4/3)×(6 in²)
... AABD = 8 in²
_____
Of course, AABC is the sum of the areas of the triangles that make it up:
... AABC = AABD + ABDC = 8 in² + 6 in²
... AABC = 14 in²