The answer is: the distance between two nuclei is 2.35×10⁻¹⁰ m.
r(Na⁺) = 1.16×10⁻¹⁰ m; radius of sodium cation.
r(F⁻) = 1.9×10⁻¹⁰ m; radius of fluoride anion.
d(NaF) = r(Na⁺) + r(F⁻).
d(NaF) = 1.16×10⁻¹⁰ m + 1.9×10⁻¹⁰ m.
d(NaF) = 2.35×10⁻¹⁰ m; distance between two nuclei.
The sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice.
The electron-group arrangement of CO₃²⁻ is trigonal planar. The molecular shape is trigonal planar, and the ideal bond angle(s) is CO₃²⁻ is 120°
<h3>What is the molecular geometry of a compound?</h3>
The position of the compound's electrons and nuclei can be seen in the molecular geometry. It demonstrates how the form of the complex is created by the interaction of electrons and nuclei.
Here, according to the VSEPR theory, the shape of the carbonate ion is trigonal planar. The carbon will be in the center.
Thus, the electron-group arrangement and the shape of the carbonate ion are trigonal planar. The bond angle will be 120°.
To learn more about molecular geometry, refer to the link:
brainly.com/question/16178099
#SPJ4
Answer:
solid
Explanation:
in the solid state the material will has a fixed shape and volume whatever the container that contains it
where in liquid the shape will be different depending on the container
and in gas state the shape and volume are not definite
For any given element the mass number can be found by adding the protons and the neutrons.
In this case its 10 protons plus 11 neutrons which gives us 21 as the mass number.