The first choice is the answer.
Answer:
For object A
m = 5 kg , v= -11 j
For B object
m = 6 kg , v= 5 i +8.7 j
For object C
m = 10 kg , v= -10 i
We know that
Linear momentum P= m v kg.m/s
a) A and C
Momentum in y direction
Py=- 5 x 11 j= - 55 j kg.m/s
Momentum in x direction
Px=- 10 x 10 j= - 100 i kg.m/s
b) B and C
Momentum in y direction
Py=6 x 8.7 j= 52.2 j kg.m/s
Momentum in x direction
Px=( 6 x 5 - 10 x 10 ) i = - 70 i kg.m/s
c) A ,B and C
By using data of a and b
Momentum in y direction
Py= 6 x 8.7 - 5 x 11 j= -2.8 j kg.m/s
Momentum in x direction
Px= 6 x 5 -10 x 10 i = -70 i kg.m/s
1) 4.8
2) 5.6
3)0.8
.............………
Answer:
The final velocity after the collision is 0.27 m/s.
Explanation:
Given that,
Mass of tiger, m = 0.195 kg
Initial speed of tiger model, v = 0.75 m/s
Mass of another clay model, m' = 0.335 kg
Initially, second model is at rest, v' = 0
We need to find the final velocity after the collision. It is a case of inelastic collision. Using the conservation of linear momentum as :

So, the final velocity after the collision is 0.27 m/s.
Answer:
-6112.26 J
Explanation:
The initial kinetic energy,
is given by
} where m is the mass of a body and
is the initial velocity
The final kinetic energy,
is given by
where
is the final velocity
Change in kinetic energy,
is given by

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for
and 12.6 m/s for
and 77 Kg for m we obtain

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26 J</u>