Answer:
Music has an important place in our lives.
A region around a charged partical or object. Let me know if this works. Hope I could help you.
Answer:
The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1
Explanation:
Let the weight that is hooked to two springs be w.
Spring#1:
Force constant= k
let x1 be the extension in spring#1
Therefore by balancing the forces, we get
Spring force= weight
⇒k·x1=w
⇒x1=w/k
Energy stored in a spring is given by
where k is the force constant and x is the extension in spring.
Therefore Energy stored in spring#1 is, 
⇒
⇒
Spring #2:
Force constant= 2k
let x2 be the extension in spring#2
Therefore by balancing the forces, we get
Spring force= weight
⇒2k·x2=w
⇒x2=w/2k
Therefore Energy stored in spring#2 is, 
⇒
⇒
∴The ratio of the energy stored by spring #1 to that stored by spring #2 is
2:1
Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by

Transverse modulus of elasticity is given by


Hence, it is not possible to produce a continuous and oriented aramid fiber.
Here we know that



now from kinematics we have

now from above all values we have



so final angular speed is -12.6 rad/s