Answer:
If by 1.5 MJ you mean 1.5E6 Joules then
W = P t = power X time
W / t = P power
P = 1.5E6 J / 600 sec = 2500 J / s
P = I V
a) I = 2500 J/s / (240 J/c) = 10.4 C / sec = 10.4 amps
b) Q = I t = 10.4 C / sec * 300 sec = 3120 Coulombs
c) E = P * t = 2500 J / sec * 100 hr * 3600 sec / hr = 9.0E8 Joules
Don’t still need the answers or are u done and is it on edge
let the height of the person with marshmallow on her head be "h"
consider the motion of the marshmallow after it is dropped from bridge.
Y₀ = initial position of the marshmallow above the ground = 5.71 m
Y = final position of marshmallow on head of person = h
v₀ = initial velocity of the marshmallow = 0 m/s
a = acceleration due to gravity = - 9.8 m/s²
t = time of travel for marshmallow = 0.921 sec
Using the kinematics equation
Y = Y₀ + v₀ t + (0.5) a t²
inserting the values
h = 5.71 + 0 (0.921) + (0.5) (-9.8) (0.921)²
h = 5.71 - 4.16
h = 1.55 m