<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
Explanation:
C,
.hahxxjdndjdndjgfndkndidjdodnxondos
To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy