1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
10

A girl planned to swim straight across a river of width 25m. After she had swum across the river, the girl found she had been sw

ept 4m downstream. How far did she actually swim? Calculate your answer, in metres, correct to 1 decimal place.
Mathematics
1 answer:
s2008m [1.1K]3 years ago
8 0
25^2 + 4^2 = c^2, c = 25.3 m
You might be interested in
Which diagram represents a correct construction of equilateral triangle ABC, given side AB?
Tju [1.3M]

Answer:

A

Step-by-step explanation:

It would be A, because EQUAL lateral is all sides are equal

3 0
3 years ago
What is the change in elevation from -6 km to -14 km?
Feliz [49]

Answer:

-8 km

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
1 ÷ 3 Express your answer as a fraction
Varvara68 [4.7K]

Answer:

1/3

Step-by-step explanation:

1 ÷ 3 = 1/3

1 divided by 3 is one-third, and one-third written as a fraction is 1/3.

7 0
3 years ago
Read 2 more answers
Find the expected value of the winnings
lord [1]

Answer:

The expected value is $3.95

Step-by-step explanation:

Here, we want to get the expected value

Mathematically, what we have to do here is to multiply each of the probabilities by the pay out value, before we proceed to add up

We have this as;

0(0.5) + 0.2(5) + 0.15(8) + 10(0.1) + 15(0.05)

= 0 + 1 + 1.2 + 1 + 0.75 = 3.95

8 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • Help me??????????????????????????????
    12·1 answer
  • Sketch the graph of<br><br><img src="https://tex.z-dn.net/?f=f%28x%29%20%3D%20%20%5Cfrac%7Bx%20-%203%7D%7Bx%20%2B%204%20%7D%20"
    9·1 answer
  • Which ordered pairs are in the solution set of the system of linear inequalities? y &gt; x y &lt; x + 1 (5, –2), (3, 1), (–4, 2)
    9·2 answers
  • Isaac wrote the integers from 1 through 104, inclusive. How many digits did he write?
    9·1 answer
  • 1/3(4y-2)+ 1/9(6y+10)
    15·2 answers
  • What is a21 of the arithmetic sequence for which a7=-19 and a10=-28
    12·1 answer
  • Find the height of the triangle in which A=192 cm^2
    7·1 answer
  • The numbers 8,x,9 and 36 are in proportion.Find x​
    10·2 answers
  • Helen is having a birthday
    8·1 answer
  • If the rate of inflation is 3.9% per year, the future price p(t) (in dollars) of a certain item can be modeled by the following
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!