Answer:
Perpendicular = Y = 34.64 ft (Approx)
Base = X = 20 ft
Step-by-step explanation:
Given:
θ = 60°
Hypotenuse = 40 ft
Perpendicular = Y
Base = X
Find:
X and Y
Computation:
Sinθ = Perpendicular / Hypotenuse
Sin 60 = Y / 40
Perpendicular = Y = 34.64 ft (Approx)
Cosθ = base / Hypotenuse
cos 60 = X / 40
Base = X = 20 ft
Answer:
The solution is
. Fourth option
Explanation:
Solve for x:

Move all the terms from the right to the left side of the equation, a zero in the right side:

Join all like terms:

The general form of the quadratic equation is:

Solve the quadratic equation by using the formula:

In our equation: a=1, b=-2, c=-46
Substituting into the formula:



Since 188=4*47

Take the square root of 4:

Divide by 2:

First option: Incorrect. The answer does not match
Second option: Incorrect. The answer does not match
Third option: Incorrect. The answer does not match
Fourth option: Correct. The answer matches exactly this option
Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1
Answer:
The other two angles are 75° and 125°.
Step-by-step explanation:
Let three angles are 2x, 3x and 5x.
The smallest angle is 50.
It means,
2x = 50
x = 25
So,
3x = 3(25) = 75°
5x = 5(25) = 125°
So, the other two angles are 75° and 125°.