Answer:
b. intracellular fluid moves to the outside of cells
Explanation:
The presence of an excess of sodium ions in the extracellular fluid would make it hypertonic with respect to the intracellular fluid. The concentration gradient would drive the intracellular fluid towards the outside of the cell to balance the concentration of the fluids on either side. The passive movement of fluids occurs across the cells and is driven by the concentration gradient only. The biological membranes are permeable for fluid movement such as the movement of water across it.
Answer:
the answer would be a mutation during reduction division
Answer:
This electron handoff from NADH to FMN, as opposed to direct reduction of CoQ by NADH, a critical component of the electron transport chain is important for Signaling Transduction and Metabolomics
Explanation:
The NADH-CoQ reductase reaction is catalyzed by Complex I. In this course of activity, following events takes place-
a) FNM (NADH dehydrogenase flavoprotein) is reduced by the NADH to FMNH2 through following reactions –
NADH+H++E-FMN↔NAD++E-FMNH2
b) In the next phase coenzyme Q receives electron from FMNH2 through the the iron–sulfur centers of the NADH-CoQ reductase
c) The iron atom undergoes oxidation–reduction cycles to conserve mitochondrial protein as lataxin and hence transport protons from the matrix to the intermembranal space thereby Signaling Transduction and Metabolomics
Answer:
B. By taking in inorganic substances
Explanation:
When you think of autotrophs, you may think of plants, and how do plants get nutrition?
By taking in inorganic substances like carbon dioxide or sunlight, then converting it into energy.
In an atom, the number of protons is almost always equal to the number of electrons