The area of the sector is 86.81π mm²
<u>Explanation:</u>
Given:
Radius of the sector, 25mm
Angle, α = 50°
Area of the sector, A = ?
We know:
Area of the sector = 
On substituting the value, we get:

Therefore, the area of the sector is 86.81π mm²
Answer:
it has one solution
Step-by-step explanation:
1.y=x-3
2. 3y-3x sub x-3 in place of y therefore
it can also be written as 3x-3x-9=9
if you add 9 to both sides 3x-3x-9+9=-9+9
0+0=0
Answer:
x=7
Step-by-step explanation:
d<em>y</em>/d<em>x</em> = 4 + √(<em>y</em> - 4<em>x</em> + 6)
Make a substitution of <em>v(x)</em> = <em>y(x)</em> - 4<em>x</em> + 6, so that d<em>v</em>/d<em>x</em> = d<em>y</em>/d<em>x</em> - 4. Then the DE becomes
d<em>v</em>/d<em>x</em> + 4 = 4 + √<em>v</em>
d<em>v</em>/d<em>x</em> = √<em>v</em>
which is separable as
d<em>v</em>/√<em>v</em> = d<em>x</em>
Integrating both sides gives
2√<em>v</em> = <em>x</em> + <em>C</em>
Get the solution back in terms of <em>y</em> :
2√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em> + <em>C</em>
You can go on to solve for <em>y</em> explicitly if you want.
√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em>/2 + <em>C</em>
<em>y</em> - 4<em>x</em> + 6 = (<em>x</em>/2 + <em>C </em>)²
<em>y</em> = 4<em>x</em> - 6 + (<em>x</em>/2 + <em>C </em>)²
Hope you can see my workout in the picture I attached below.
f⁻¹(x) =

AND
f⁻¹(19) =