Answer:
B. Quadrilateral
Step-by-step explanation:
Just took the test
B.
You are looking for something that does not let 25x go over 80.
Multiplying both sides by
gives

so that substituting
and hence
gives the linear ODE,

Now multiply both sides by
to get

so that the left side condenses into the derivative of a product.
![\dfrac{\mathrm d}{\mathrm dx}[x^3v]=3x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E3v%5D%3D3x%5E2)
Integrate both sides, then solve for
, then for
:




![\boxed{y=\sqrt[3]{1+\dfrac C{x^3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D%5Csqrt%5B3%5D%7B1%2B%5Cdfrac%20C%7Bx%5E3%7D%7D%7D)
Answer:
<u>1st pic:</u>
x = 49
top angle = 45
bottom angle = 108
far right angle = 27 degrees
<u>2nd pic:</u>
angle 1 = 88 degrees
angle 2 = 57 degrees
angle 3 = 35 degrees
angle 4 = 145 degrees
Step-by-step explanation:
<u>1st pic:</u>
you can find the far right angle by taking 153 and subtracting it from 180:
⇒ 180 - 153 = 27 degrees
you can find x by the following equation ⇒ x - 4 + 2x + 10 + 27 = 180
combine like terms ⇒ 3x + 33 = 180
subtract 33 from each side ⇒ 3x + 33 - 33 = 180 - 33 ⇒ 3x = 147
divide 3 on each side: ⇒ 
x = 49
to find the top and bottom angles, substitute 49 for x:
top angle : x - 4
49 - 4 = 45 degrees
bottom angle: 2x + 10
2 x 49 + 10 = 108 degrees
<u>2nd pic:</u>
angle 1:
⇒ 180 - 92 = 88 degrees
angle 2:
⇒ 180 - 123 = 57 degrees
angle 3:
⇒ 180 - (88 + 57) = 35 degrees
angle 4:
⇒ 180 - 35 = 145 dgerees