<span> y = 7 + 3/5 y = 35/5 + 3/5 y = 38/5 y = 2*(38/5) y = 76/10 --- lunch time: z = 1/2 z = 5*(1/2) z = 5/10 --- time switching classes: w = 7/10 --- y - 6x - z - w = 0 6x = y - z - w x = (y - z - w)/6 x = (76/10 - 5/10 - 7/10)/6 x = (76 - 5 - 7)/(10*6) x = (64)/(10*6) x = (2*2*2*2*2*2)/(2*5*2*3) x = (2*2*2*2)/(5*3) x = 16/15
x = 1.0666666666 --- check: y = 7 + 3/5 y = 7.6 z = 1/2 z = 0.5 w = 7/10 w = 0.7 y - 6x - z - w = 0 6x = y - z - w x = (y - z - w)/6 x = (7.6 - 0.5 - 0.7)/6 x = 1.0666666666
F ( x ) = 6^(x+1) y = 6^(x+1) The inverse is: And when you plug in the values: x = 1, y = - 1: - 1 = log 1 - 1 - 1 = 0 - 1 - 1 = - 1 so the answer is: ( 1, - 1 )