The surface area of the triangular prism is of 140 cm².
<h3>What is the surface area of a prism?</h3>
It is the sum of the areas of all faces of a prism. In this problem, the prism has these following faces:
- One rectangle of dimensions 8 cm and 6 + 4 + 5 = 15 cm.
- Two right triangles with sides 4 cm and 5 cm.
For a rectangle, the area is given by the multiplication of the dimensions, hence:
Ar = 8 x 15 = 120 cm²
For each right triangle, the area is given by half the multiplication of the sides, hence:
At = 2 x 0.5 x 4 x 5 = 20 cm².
Then the surface area of the prism is:
S = 120 cm² + 20 cm² = 140 cm².
More can be learned about surface area at brainly.com/question/28123954
#SPJ1
Answer:
c) ten thousand dollars
Step-by-step explanation:
1/2-1/4
(1/2x2)-1/4
2/4-1/4
2-1
1
1/4
Answer:
m<1 = 97
m<2 = 83
m<3 = 112
m<4 = 68
m<5 = 112
m<6 = 68
m<7 = 97
m<8 = 83
m<9 = 97
m<10 = 83
m<11 = 112
m<12 = 68
m<13 = 112
m<14 = 68
m<15 = 97
m<16 = 83
Step-by-step explanation:
Answer:
82.35%
Step-by-step explanation:
60 divided by 340=0.17647058823
Multiply that by 100 and you get 17.647058823
Next, round and you get 17.65
100-17.65=82.35