The answer for the first on 8 and the second one is 9
Answer:
B. 54.12x38=2056.56 dollars to fill up 38 gallons.
Step-by-step explanation:
BOKU NO HERO ACADEMIA WOOOO
9514 1404 393
Answer:
$2.50
Step-by-step explanation:
The question asks for the total cost of a notebook and pen together. We don't need to find their individual costs in order to answer the question.
Sometimes we get bored solving systems of equations in the usual ways. For this question, let's try this.
The first equation has one more notebook than pens. The second equation has 4 more notebooks than pens. If we subtract 4 times the first equation from the second, we should have equal numbers of notebooks and pens.
(8n +4p) -4(3n +2p) = (16.00) -4(6.50)
-4n -4p = -10.00 . . . . . . . . . . . simplify
n + p = -10.00/-4 = 2.50 . . . . divide by the coefficient of (n+p)
The total cost for one notebook and one pen is $2.50.
__
<em>Additional comment</em>
The first equation has 1 more notebook than 2 (n+p) combinations, telling us that a notebook costs $6.50 -2(2.50) = $1.50. Then the pen is $2.50 -1.50 = $1.00.
One could solve for the costs of a notebook (n) and a pen (p) individually, then add them together to answer the question. We judge that to be more work.
With continuous data, it is possible to find the midpoint of any two distinct values. For instance, if h = height of tree, then its possible to find the middle height of h = 10 and h = 7 (which in this case is h = 8.5)
On the other hand, discrete data can't be treated the same way (eg: if n = number of people, then there is no midpoint between n = 3 and n = 4).
-------------------------------------
With that in mind, we have the following answers
1) Continuous data. Time values are always continuous. Any two distinct time values can be averaged to find the midpoint
2) Continuous data. Like time values, temperatures can be averaged as well.
3) Discrete data. Place locations in a race or competition are finite and we can't have midpoints. We can't have a midpoint between 9th and 10th place for instance.
4) Continuous data. We can find the midpoint and it makes sense to do so when it comes to speeds.
5) Discrete data. This is a finite number and countable. We cannot have 20.5 freshman for instance.