1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
14

Awnser both if u can tysm if u do

Mathematics
1 answer:
Sunny_sXe [5.5K]3 years ago
6 0

21) C: 4/1

(I cannot answer 20)

You might be interested in
What is the intermediate step in the form (x + a)? = b as a result of completing the
Mrac [35]

Answer:

(x + 9)² = 36

Step-by-step explanation:

Given

x² + 18x + 57 = 12 ( subtract 57 from both sides )

x² + 18x = - 45

To complete the square

add ( half the coefficient of the x- term)² to both sides

x² + 2(9)x + 81 = - 45 + 81

(x + 9)² = 36

5 0
2 years ago
Apply properties of operatione to write an equivalent expression​
____ [38]

Answer:

4t

Step-by-step explanation:

All we are doing is combining like terms and since all of then have a "t" in it we would just add the 4 "t's" together like normal addition.

4 0
2 years ago
Julio solicitó un préstamo en el banco para invertir en su casa, pagó una cuota de $32,950 y otra de $25,825. Si el préstamo fue
Umnica [9.8K]

Answer:

Julio debe $ 41225 al banco por concepto del préstamo para invertir en su casa.

Step-by-step explanation:

Dada la falta de información, asumimos que el préstamo fue realizado sin tasa de interés, de modo que la deuda solo sea el monto inicial menos las cuotas pagadas por quien recibe el préstamo, la cantidad de dinero que adeuda al banco es:

x = \$\,100000 - \$\,32950 - \$\,25825

x = \$ \,41225

Julio debe $ 41225 al banco por concepto del préstamo para invertir en su casa.

7 0
3 years ago
Suppose Upper F Superscript prime Baseline left-parenthesis x right-parenthesis equals 3 x Superscript 2 Baseline plus 7 and Upp
Sedaia [141]

It looks like you're given

<em>F'(x)</em> = 3<em>x</em>² + 7

and

<em>F</em> (0) = 5

and you're asked to find <em>F(b)</em> for the values of <em>b</em> in the list {0, 0.1, 0.2, 0.5, 2.0}.

The first is done for you, <em>F</em> (0) = 5.

For the remaining <em>b</em>, you can solve for <em>F(x)</em> exactly by using the fundamental theorem of calculus:

F(x)=F(0)+\displaystyle\int_0^x F'(t)\,\mathrm dt

F(x)=5+\displaystyle\int_0^x(3t^2+7)\,\mathrm dt

F(x)=5+(t^3+7t)\bigg|_0^x

F(x)=5+x^3+7x

Then <em>F</em> (0.1) = 5.701, <em>F</em> (0.2) = 6.408, <em>F</em> (0.5) = 8.625, and <em>F</em> (2.0) = 27.

On the other hand, if you're expected to <em>approximate</em> <em>F</em> at the given <em>b</em>, you can use the linear approximation to <em>F(x)</em> around <em>x</em> = 0, which is

<em>F(x)</em> ≈ <em>L(x)</em> = <em>F</em> (0) + <em>F'</em> (0) (<em>x</em> - 0) = 5 + 7<em>x</em>

Then <em>F</em> (0) = 5, <em>F</em> (0.1) ≈ 5.7, <em>F</em> (0.2) ≈ 6.4, <em>F</em> (0.5) ≈ 8.5, and <em>F</em> (2.0) ≈ 19. Notice how the error gets larger the further away <em>b </em>gets from 0.

A <em>better</em> numerical method would be Euler's method. Given <em>F'(x)</em>, we iteratively use the linear approximation at successive points to get closer approximations to the actual values of <em>F(x)</em>.

Let <em>y(x)</em> = <em>F(x)</em>. Starting with <em>x</em>₀ = 0 and <em>y</em>₀ = <em>F(x</em>₀<em>)</em> = 5, we have

<em>x</em>₁ = <em>x</em>₀ + 0.1 = 0.1

<em>y</em>₁ = <em>y</em>₀ + <em>F'(x</em>₀<em>)</em> (<em>x</em>₁ - <em>x</em>₀) = 5 + 7 (0.1 - 0)   →   <em>F</em> (0.1) ≈ 5.7

<em>x</em>₂ = <em>x</em>₁ + 0.1 = 0.2

<em>y</em>₂ = <em>y</em>₁ + <em>F'(x</em>₁<em>)</em> (<em>x</em>₂ - <em>x</em>₁) = 5.7 + 7.03 (0.2 - 0.1)   →   <em>F</em> (0.2) ≈ 6.403

<em>x</em>₃ = <em>x</em>₂ + 0.3 = 0.5

<em>y</em>₃ = <em>y</em>₂ + <em>F'(x</em>₂<em>)</em> (<em>x</em>₃ - <em>x</em>₂) = 6.403 + 7.12 (0.5 - 0.2)   →   <em>F</em> (0.5) ≈ 8.539

<em>x</em>₄ = <em>x</em>₃ + 1.5 = 2.0

<em>y</em>₄ = <em>y</em>₃ + <em>F'(x</em>₃<em>)</em> (<em>x</em>₄ - <em>x</em>₃) = 8.539 + 7.75 (2.0 - 0.5)   →   <em>F</em> (2.0) ≈ 20.164

4 0
2 years ago
Anyone know how to round 2.5678 round to the nearest half
a_sh-v [17]

Answer:

2.5678 to the nearest half is 13,000

4 0
2 years ago
Read 2 more answers
Other questions:
  • How do you solve binomials
    14·1 answer
  • Cedric bought his truck new for $20,000. It’s value decreases 15.4% each year. In approximately how many years will the value of
    11·1 answer
  • Describe how to solve any equation in the form ax + b = c for the variable x. ​
    10·2 answers
  • A researcher wants to determine if birthweights of children born to U.S. mothers is affected in any way when large megadoses of
    15·1 answer
  • PLZZZ HELP ME WITH THIS TWO.DUE TODAY!!Sorry if being annyoing its jusr have lot work​
    15·2 answers
  • Graph the line with slope -5 and y-intercept 1.
    10·1 answer
  • Y = −2/3x − 2/3 is
    6·1 answer
  • What is the result of adding these two equations?<br> 5x - y = 6<br> - 2x + y = 8
    14·1 answer
  • Allchong
    14·1 answer
  • Last year, the Good Foods Cereal Company produced 753,295 boxes of cereal. The company
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!