Answer:
1. magnesium chloride
2. lithium chloride
3. 2
Explanation:
Know how to figure names (their are rules, be familiar with them)
Count the number
- Hope that helps! Let me know if you need further explanation.
Seeds come from adult plants. They're made from plants to make more plants.
Answer:
Tin(IV) Oxide + Carbon = Tin + Carbon Monoxide
Explanation:
Answer:
I think it's unbalanced
(I'm so sorry if it's wrong)
Hope this helps!
Answer:
0.124 M
Explanation:
The reaction obeys second-order kinetics:
![r = k[BrO^-]^2](https://tex.z-dn.net/?f=r%20%3D%20k%5BBrO%5E-%5D%5E2)
According to the integrated second-order rate law, we may rewrite the rate law in terms of:
![\dfrac{1}{[BrO^-]_t} = kt + \dfrac{1}{[BrO^-]_o}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%5BBrO%5E-%5D_t%7D%20%3D%20kt%20%2B%20%5Cdfrac%7B1%7D%7B%5BBrO%5E-%5D_o%7D)
Here:
is a rate constant,
is the molarity of the reactant at time t,
is the initial molarity of the reactant.
Converting the time into seconds (since the rate constant has seconds in its units), we obtain:

Rearranging the integrated equation for the amount at time t:
![[BrO^-]_t = \dfrac{1}{kt + \dfrac{1}{[BrO^-]_o}}](https://tex.z-dn.net/?f=%5BBrO%5E-%5D_t%20%3D%20%5Cdfrac%7B1%7D%7Bkt%20%2B%20%5Cdfrac%7B1%7D%7B%5BBrO%5E-%5D_o%7D%7D)
We may now substitute the data:
![[BrO^-]_t = \dfrac{1}{0.056 M^{-1}s^{-1}\cdot 60.0 s + \dfrac{1}{0.212 M}} = 0.124 M](https://tex.z-dn.net/?f=%5BBrO%5E-%5D_t%20%3D%20%5Cdfrac%7B1%7D%7B0.056%20M%5E%7B-1%7Ds%5E%7B-1%7D%5Ccdot%2060.0%20s%20%2B%20%5Cdfrac%7B1%7D%7B0.212%20M%7D%7D%20%3D%200.124%20M)