Answer:
The pressure will be 0.4 atm.
Explanation:
The gas laws are a set of chemical and physical laws that allow determining the behavior of gases in a closed system. The parameters evaluated in these laws are pressure, volume, temperature and moles.
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them less times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V= k
If you initially have the gas at a volume V1 and press P1, when the conditions change to a volume V2 and pressure P2, the following is satisfied:
P1*V1= P2*V2
In this case:
- P1= 1.2 atm
- V1= 4 L
- P2= ?
- V2= 12 L
Replacing:
1.2 atm* 4 L= P2* 12 L
Solving:

P2= 0.4 atm
<u><em>The pressure will be 0.4 atm.</em></u>
Answer:
Answer: a) 20g of H2O (18.02 g/mol) molecules=6.68x10^23
Explanation:
In order to find the amount of molecules of each of the options, we need to follow the following equation.

So, let´s get the number of molecules for each of the options.





the smalest number is in option a)
Best of luck.
Answer:
pH = 4.9
Explanation:
Given data
[H⁺] = 13 × 10⁻⁶ M
The pH is a scale used to determine <em>the acidity or basicity of a solution</em>. The pH is related to the concentration of hydrogen ions through the following expression.
pH = -log [H⁺]
pH = -log 13 × 10⁻⁶
pH = 4.9
Since the pH < 7, the soil is considered to be acid.
Answer:
group 1 and are called Alkali metals. Similarly, very active non-metals are placed in group 17
Explanation:
Answer:
b. Conducts electricity when dissolved in water
Explanation:
Iron(II) chloride, is the chemical compound with formula FeCl2.
It is a solid with a high melting point of about 677 degree Celsius or 950 K when in anhydrous form but have lower melting point in hydrated form.
The compound is often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in the laboratory.
There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.