Answer: (2) releases 2260 J/g of heat energy
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 mole of liquid to gas at atmospheric pressure.
Latent heat of condensation is energy released when 1 mole of vapor condenses to form liquid droplets.
The temperature does not change during this process, so heat released goes into changing the state of the substance, thus it is called latent which means hidden. The energy released in this process is same in magnitude as latent heat of vaporization. The heat of condensation of water vapour is about 2,260 J/g.
Kepler did not study the speed of the planets, rather, he studied how the planets move in the solar system. He proposed three laws. As a summary, he described that the planets move around the sun in the shape of an ellipse (orbit), and the Sun being one of the foci. Then, he proposed the period for the planet to complete one revolution around the Sun.
On the other hand, Newton studied the forces acting on the planet (or any object in space) that explain how the planets move around the solar system as described by Kepler. Also, Kepler's observations only apply to planets and not the moons or satellites. Thus, Kepler only made laws from observations, while Newton based it from underlying principles that led him to mathematical equations such as the law of universal gravitation.
Answer:
V₂ = 22.23 mL
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 25 mL
Initial pressure = 725 mmHg (725/760 =0.954 atm)
Initial temperature = 20 °C (20 +273 = 293 K)
Final pressure = standard = 1 atm
Final temperature = standard = 273.15 K
Final volume = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 0.954 atm × 25 mL × 273.15 K / 293 K × 1 atm
V₂ = 6514.63 mL . atm . K / 293 K . atm
V₂ = 22.23 mL
C: Z because it is the only area of land that is darkened.