1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
9

High-speed stroboscopic photographs show that the head of a 210-g golf club is traveling at 56 m/s just before it strikes a 46-g

golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 42 m/s. Find the speed of the golf ball just after impact. m/s
Physics
1 answer:
tamaranim1 [39]3 years ago
3 0

Explanation:

It is given that,

Mass of golf club, m₁ = 210 g = 0.21 kg

Initial velocity of golf club, u₁ = 56 m/s

Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg

After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.

Initial momentum of golf ball, p_i=m_1u_1=0.21\ kg\times 56\ m/s=11.76\ kg-m/s

After the collision, final momentum p_f=0.21\ kg\times 42\ m/s+0.046v

Using the conservation of momentum as :

p_i=p_f

11.76\ kg-m/s=0.21\ kg\times 42\ m/s+0.046v

v = 63.91 m/s

So, the speed of the  golf ball just after impact is 63.91 m/s. Hence, this is the required solution.

You might be interested in
Match the following items.
Ray Of Light [21]

Answer:

Je ne Sachez que Qu’est-ce que le

8 0
2 years ago
Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc
lisov135 [29]

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

7 0
3 years ago
Read 2 more answers
I’ll give u BRAINLIEST PLEASE!! HURRY
zalisa [80]

Answer:

C

Explanation:

6 0
3 years ago
When a cup is placed on a table, which force prevents the cup from falling to the ground?
zhuklara [117]

Answer:

B. normal force

Explanation:

Because there is no frictional or resistance force. However gravitational force is applied downroad from the center of the cup thus the contact force that is perpendicular to the surface that an object contacts which is the normal force exerted upward from the table that prevents an object from falling.

6 0
3 years ago
The velocity of an object is positive and steadily increasing. Which of the following graphs represents how the acceleration of
stiv31 [10]
If an object's velocity is steadily increasing it means that the acceleration is constant at a certain value.

Choice A shows an acceleration of zero which would only be true if the object was not moving or if its velocity was not changing.

Choice B gives us a graph showing acceleration increasing over time and is therefore incorrect.

Choice C is correct because the acceleration is constant. Steadily increasing tells us that the acceleration is fixed at a certain value.

Choice D is incorrect an represents a constant negative acceleration. This would be the case if the object was steadily decreasing in velocity.




4 0
3 years ago
Other questions:
  • The motion of a particle is described by x = 10 sin (πt + π/3), where x is in meters and t is in seconds. At what time in second
    15·1 answer
  • A positive point charge Q is fixed on a very large horizontal frictionless tabletop. A second positive point charge q is release
    11·1 answer
  • Draw a diagram to show how two resistors R1 and R2 are connected in parallel.
    13·1 answer
  • A rock is thrown upward from level ground in such a way that the maximumheight of its flight is equal to its horizontal rangeR.
    6·1 answer
  • Look at the densities of the jovian planets given in figure 1. which of the following statements best describes the pattern of j
    6·2 answers
  • How do you know that potassium an alkali metal is highly reactive
    5·1 answer
  • What is the most likely reason that Mendeleev placed tellurium before iodine?
    14·1 answer
  • The springs of a 1500 kg car compress 5.00 mm when its 68 kg driver gets into the driver's seat. Part A If the car goes over a b
    13·1 answer
  • Why is deforestation a serious global environment problem
    5·1 answer
  • If we increase the driving frequency in a circuit with purely resistive load, how do the amplitudes VR and IR change?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!