1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
8

The protons initially are located where the electric potential has a value of 7.60 MV and then they travel through a vacuum to a

region where the potential is zerdo. (a) Find the final speed of these protons m/s (b) Find the accelerating electric field strength if the potential changed uniformly over a distance of 1.70 m. MV/m
Physics
1 answer:
DochEvi [55]3 years ago
7 0

Answer:

(a) 3.82 x 10⁷ m/s

(b) 4.5 MV/m

Explanation:

(a)

ΔV = change in the electric potential as the proton moves = 7.60 x 10⁶ Volts

q = magnitude of charge on proton = 1.6 x 10⁻¹⁹ C

v = speed gained by the proton

m = mass of proton = 1.67 x 10⁻²⁷ kg

Using conservation of energy

Kinetic energy gained by proton = Electric potential energy

(0.5) m v² = q ΔV

inserting the values

(0.5) (1.67 x 10⁻²⁷) v² = (1.6 x 10⁻¹⁹) (7.60 x 10⁶)

v = 3.82 x 10⁷ m/s

(b)

d = distance over which the potential change = 1.70 m

Electric field is given as

E = ΔV/d

E = 7.60 x 10⁶/1.70

E = 4.5 x 10⁶ V/m

E = 4.5 MV/m

You might be interested in
a crude approximation of voice production is to consider the breathing passages and mouth to be a resonating tube closed at one
prohojiy [21]

The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be 37^oC is 367.42 Hz.

A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.

The fundamental frequency in the tube is given by

f=\frac{v_T}{4L}

where, v_T=v\sqrt{\frac{T}{273} }

Since, T=37+273 K = 310 K

v = 331 m/s

\therefore v_T=331\sqrt{\frac{310}{273} } = 352.72 \ m/s

Using this, we get:

f=\frac{352.72}{4(0.240)} \\f=367.42 \ Hz

Hence, the fundamental frequency is 367.42 Hz.

To learn more about Attention here:

brainly.com/question/14673613

#SPJ4

7 0
2 years ago
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
3 years ago
Questions
astra-53 [7]

Answer:

1968

Explanation:

2400*20.5*0.004

8 0
3 years ago
What is the forumla for chlorine? anion
prohojiy [21]
Chlorine gas or just chlorine?

6 0
3 years ago
Read 2 more answers
The fragment of an asteroid or any interplanetary material is known as a
Elodia [21]
The fragment of an asteroid or any interplanetary material is known as A. METEROID
8 0
4 years ago
Other questions:
  • Why do earthquakes and volcanoes occur along continent and ocean boundaries?
    11·2 answers
  • What are the characteristics and ph level of acids?
    9·1 answer
  • Why does the band of stability curve upward at high atomic numbers? excess neutrons are required due to the repulsion between th
    14·1 answer
  • Which of the following is not a characteristic of electromagnetic waves? (A) They can travel at various speeds through any one m
    5·2 answers
  • A hockey puck is struck so that it slides at a constant speed and strikes the far side of the rink, 58.2 m away. The shooter hea
    10·1 answer
  • How does the stratosphere protect us?
    14·1 answer
  • An object has a mass of 7g and a volume of 14cm. What is the density
    14·1 answer
  • If you run at an average speed of 10 mi/h, how long will it take
    14·1 answer
  • 2. Which state of matter—solid, liquid, or gas—is the best at conducting heat? Why?
    11·2 answers
  • Will a beam of light that is, at first, in air and oriented perpendicular to the surface of a body of water be deflected as a re
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!