A water wave is an example of a mechanical wave. A wave that can travel only through matter is called a mechanical wave.
Answer:
b. 0.20 m/s.
Explanation:
Given;
initial mass, m = 0.2 kg
maximum speed, v = 0.3 m/s
The total energy of the spring at the given maximum speed is calculated as;
K.E = ¹/₂mv²
K.E = 0.5 x 0.2 x 0.3²
K.E = 0.009 J
If the mass is changed to 0.4 kg
¹/₂mv² = K.E
mv² = 2K.E

Therefore, the maximum speed is 0.20 m/s
Answer:
Explanation:
There are three basic ways to increase the likelihood of safely dropping an egg:
Slow down the descent speed.
Parachutes are an obvious method for slowing the decent speed, as long as the design includes a way to keep the parachute open.
Cushion the egg so that something other than the egg itself absorbs the impact of landing.
The largest end of the egg has an area of air trapped between the egg's two membranes. This air space forms when the contents of the egg cool and contract after the egg is laid. It accounts for the crater you often see at the end of a hard-cooked egg. Upon impact the heavier spherical yolk continues moving towards the ground. The compression of the airspace acts like an air bag for the eggs' valuable contents. Building an artificial cushioning device will also help absorb the impact of landing.
The largest end of the egg has an area of air trapped between the egg's two membranes. This air space forms when the contents of the egg cool and contract after the egg is laid. It accounts for the crater you often see at the end of a hard-cooked egg. Upon impact the heavier spherical yolk continues moving towards the ground. The compression of the airspace acts like an air bag for the eggs' valuable contents. Building an artificial cushioning device will also help absorb the impact of landing.
Orient the egg so that it lands on the strongest part of the shell.
The arch structure at either end of the egg is stronger than its sides. Pressure is distributed down (or up) the arches so that less pressure acts on any one point. Orienting the arch downwards will increase the egg's survival.
Hope this helps you
Answer:
4 secs
Explanation:
The first step is to calculate the velocity
V= frequency × wavelength
= 500× 0.2
= 100
Therefore the time can be calculated as follows
= distance/velocity
= 400/100
= 4 secs